Difference between revisions of "2020 AIME I Problems/Problem 15"
(→Solution) |
(→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
The following is a simple power of a point solution to this menace of a problem: | The following is a simple power of a point solution to this menace of a problem: | ||
− | + | <asy> | |
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
import graph; size(18cm); | import graph; size(18cm); | ||
Line 24: | Line 24: | ||
/* dots and labels */ | /* dots and labels */ | ||
dot((-8.98,3.39),dotstyle); | dot((-8.98,3.39),dotstyle); | ||
− | label(" | + | label("$B$", (-8.914038694762803,3.548005694821766), NE * labelscalefactor); |
dot((-0.08068432003432058,3.4366950566657577),dotstyle); | dot((-0.08068432003432058,3.4366950566657577),dotstyle); | ||
− | label(" | + | label("$C$", (-0.021788682572170717,3.594159241597842), NE * labelscalefactor); |
dot((-4.538171990791266,4.905585481447388),dotstyle); | dot((-4.538171990791266,4.905585481447388),dotstyle); | ||
− | label(" | + | label("$O$", (-4.483298204259513,5.055688222840243), NE * labelscalefactor); |
dot((-4.522512329243054,1.9211095752183682),linewidth(4pt) + dotstyle); | dot((-4.522512329243054,1.9211095752183682),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$O'$", (-4.467913688667488,2.0403231668032897), NE * labelscalefactor); |
dot((-7.790821079477277,5.289342543424063),dotstyle); | dot((-7.790821079477277,5.289342543424063),dotstyle); | ||
− | label(" | + | label("$H$", (-7.729430994176854,5.440301112640874), NE * labelscalefactor); |
dot((-7.806480741025488,8.273818449653083),linewidth(4pt) + dotstyle); | dot((-7.806480741025488,8.273818449653083),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$A$", (-7.7448155097688804,8.394128106309726), NE * labelscalefactor); |
dot((-9.139423209055858,3.980748932978468),linewidth(4pt) + dotstyle); | dot((-9.139423209055858,3.980748932978468),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$X$", (-9.083268366275083,4.101848256134676), NE * labelscalefactor); |
dot((-9.752410287411378,3.3859471330788855),linewidth(4pt) + dotstyle); | dot((-9.752410287411378,3.3859471330788855),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$K$", (-9.68326447436407,3.5018521480456903), NE * labelscalefactor); |
dot((-3.475227037470366,9.476907329794422),linewidth(4pt) + dotstyle); | dot((-3.475227037470366,9.476907329794422),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$Y$", (-3.4063821128177407,9.594120322487697), NE * labelscalefactor); |
dot((-7.780888168280388,3.3962917865759925),linewidth(4pt) + dotstyle); | dot((-7.780888168280388,3.3962917865759925),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$L$", (-7.714046478584829,3.5172366636377155), NE * labelscalefactor); |
dot((-7.776585346090923,2.5762441045932913),linewidth(4pt) + dotstyle); | dot((-7.776585346090923,2.5762441045932913),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$D$", (-7.714046478584829,2.7018573372603765), NE * labelscalefactor); |
dot((-6.307325123263112,6.728828131386446),linewidth(4pt) + dotstyle); | dot((-6.307325123263112,6.728828131386446),linewidth(4pt) + dotstyle); | ||
− | label(" | + | label("$E$", (-6.252517497342424,6.855676547107199), NE * labelscalefactor); |
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
/* end of picture */ | /* end of picture */ | ||
− | + | </asy> | |
Let points be what they appear as in the diagram below. Note that <math>3HX = HY</math> is not insignificant; from here, we set <math>XH = HE = \frac{1}{2} EY = HL = 2</math> by PoP and trivial construction. Now, <math>D</math> is the reflection of <math>A</math> over <math>H</math>. Note <math>AO \perp XY</math>, and therefore by Pythagorean theorem we have <math>AE = XD = \sqrt{5}</math>. Consider <math>HD = 3</math>. We have that <math>\triangle HXD \cong HLK</math>, and therefore we are ready to PoP with respect to <math>(BHC)</math>. Setting <math>BL = x, LC = y</math>, we obtain <math>xy = 10</math> by PoP on <math>(ABC)</math>, and furthermore, we have <math>KH^2 = 9 = (KL - x)(KL + y) = (\sqrt{5} - x)(\sqrt{5} + y)</math>. Now, we get <math>4 = \sqrt{5}(y - x) - xy</math>, and from <math>xy = 10</math> we take <cmath>\frac{14}{\sqrt{5}} = y - x.</cmath> However, squaring and manipulating with <math>xy = 10</math> yields that <math>(x + y)^2 = \frac{396}{5}</math> and from here, since <math>AL = 5</math> we get the area to be <math>3\sqrt{55} \implies \boxed{058}</math>. ~awang11's sol | Let points be what they appear as in the diagram below. Note that <math>3HX = HY</math> is not insignificant; from here, we set <math>XH = HE = \frac{1}{2} EY = HL = 2</math> by PoP and trivial construction. Now, <math>D</math> is the reflection of <math>A</math> over <math>H</math>. Note <math>AO \perp XY</math>, and therefore by Pythagorean theorem we have <math>AE = XD = \sqrt{5}</math>. Consider <math>HD = 3</math>. We have that <math>\triangle HXD \cong HLK</math>, and therefore we are ready to PoP with respect to <math>(BHC)</math>. Setting <math>BL = x, LC = y</math>, we obtain <math>xy = 10</math> by PoP on <math>(ABC)</math>, and furthermore, we have <math>KH^2 = 9 = (KL - x)(KL + y) = (\sqrt{5} - x)(\sqrt{5} + y)</math>. Now, we get <math>4 = \sqrt{5}(y - x) - xy</math>, and from <math>xy = 10</math> we take <cmath>\frac{14}{\sqrt{5}} = y - x.</cmath> However, squaring and manipulating with <math>xy = 10</math> yields that <math>(x + y)^2 = \frac{396}{5}</math> and from here, since <math>AL = 5</math> we get the area to be <math>3\sqrt{55} \implies \boxed{058}</math>. ~awang11's sol |
Revision as of 16:14, 12 March 2020
Note: Please do not post problems here until after the AIME.
Problem
Solution
The following is a simple power of a point solution to this menace of a problem:
Let points be what they appear as in the diagram below. Note that is not insignificant; from here, we set by PoP and trivial construction. Now, is the reflection of over . Note , and therefore by Pythagorean theorem we have . Consider . We have that , and therefore we are ready to PoP with respect to . Setting , we obtain by PoP on , and furthermore, we have . Now, we get , and from we take However, squaring and manipulating with yields that and from here, since we get the area to be . ~awang11's sol
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.