Difference between revisions of "2020 AIME I Problems/Problem 13"
(→Problem) |
Kevinmathz (talk | contribs) (→Solution) |
||
Line 4: | Line 4: | ||
Point <math>D</math> lies on side <math>\overline{BC}</math> of <math>\triangle ABC</math> so that <math>\overline{AD}</math> bisects <math>\angle BAC.</math> The perpendicular bisector of <math>\overline{AD}</math> intersects the bisectors of <math>\angle ABC</math> and <math>\angle ACB</math> in points <math>E</math> and <math>F,</math> respectively. Given that <math>AB=4,BC=5,</math> and <math>CA=6,</math> the area of <math>\triangle AEF</math> can be written as <math>\tfrac{m\sqrt{n}}p,</math> where <math>m</math> and <math>p</math> are relatively prime positive integers, and <math>n</math> is a positive integer not divisible by the square of any prime. Find <math>m+n+p.</math> | Point <math>D</math> lies on side <math>\overline{BC}</math> of <math>\triangle ABC</math> so that <math>\overline{AD}</math> bisects <math>\angle BAC.</math> The perpendicular bisector of <math>\overline{AD}</math> intersects the bisectors of <math>\angle ABC</math> and <math>\angle ACB</math> in points <math>E</math> and <math>F,</math> respectively. Given that <math>AB=4,BC=5,</math> and <math>CA=6,</math> the area of <math>\triangle AEF</math> can be written as <math>\tfrac{m\sqrt{n}}p,</math> where <math>m</math> and <math>p</math> are relatively prime positive integers, and <math>n</math> is a positive integer not divisible by the square of any prime. Find <math>m+n+p.</math> | ||
− | + | ||
+ | |||
+ | Please thank awang11 for his amazing diagram: | ||
<asy> | <asy> | ||
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
Line 59: | Line 61: | ||
/* end of picture */ | /* end of picture */ | ||
</asy> | </asy> | ||
+ | |||
+ | == Solution == | ||
+ | |||
Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{12}{\sqrt{7}}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11 | Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{12}{\sqrt{7}}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11 | ||
Revision as of 16:45, 12 March 2020
Note: Please do not post problems here until after the AIME.
Problem
Point lies on side of so that bisects The perpendicular bisector of intersects the bisectors of and in points and respectively. Given that and the area of can be written as where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. Find
Please thank awang11 for his amazing diagram:
Solution
Points are defined as shown. It is pretty easy to show that by spiral similarity at by some short angle chasing. Now, note that is the altitude of , as the altitude of . We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that , the altitude of . Similarly, the altitude of is the altitude of , or . However, it's not too hard to see that , and therefore . From here, we get that the area of is , by similarity. ~awang11
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.