Difference between revisions of "2020 AIME I Problems/Problem 13"

(Problem)
(Solution)
Line 4: Line 4:
 
Point <math>D</math> lies on side <math>\overline{BC}</math> of <math>\triangle ABC</math> so that <math>\overline{AD}</math> bisects <math>\angle BAC.</math> The perpendicular bisector of <math>\overline{AD}</math> intersects the bisectors of <math>\angle ABC</math> and <math>\angle ACB</math> in points <math>E</math> and <math>F,</math> respectively. Given that <math>AB=4,BC=5,</math> and <math>CA=6,</math> the area of <math>\triangle AEF</math> can be written as <math>\tfrac{m\sqrt{n}}p,</math> where <math>m</math> and <math>p</math> are relatively prime positive integers, and <math>n</math> is a positive integer not divisible by the square of any prime. Find <math>m+n+p.</math>
 
Point <math>D</math> lies on side <math>\overline{BC}</math> of <math>\triangle ABC</math> so that <math>\overline{AD}</math> bisects <math>\angle BAC.</math> The perpendicular bisector of <math>\overline{AD}</math> intersects the bisectors of <math>\angle ABC</math> and <math>\angle ACB</math> in points <math>E</math> and <math>F,</math> respectively. Given that <math>AB=4,BC=5,</math> and <math>CA=6,</math> the area of <math>\triangle AEF</math> can be written as <math>\tfrac{m\sqrt{n}}p,</math> where <math>m</math> and <math>p</math> are relatively prime positive integers, and <math>n</math> is a positive integer not divisible by the square of any prime. Find <math>m+n+p.</math>
  
== Solution ==
+
 
 +
 
 +
Please thank awang11 for his amazing diagram:
 
<asy>
 
<asy>
 
  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
 
  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
Line 59: Line 61:
 
  /* end of picture */
 
  /* end of picture */
 
</asy>
 
</asy>
 +
 +
== Solution ==
 +
 
Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{12}{\sqrt{7}}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11
 
Points are defined as shown. It is pretty easy to show that <math>\triangle AFE \sim \triangle AGH</math> by spiral similarity at <math>A</math> by some short angle chasing. Now, note that <math>AD</math> is the altitude of <math>\triangle AFE</math>, as the altitude of <math>AGH</math>. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that <math>AD/2 = \frac{\sqrt{18}}{2}</math>, the altitude of <math>\triangle AFE</math>. Similarly, the altitude of <math>\triangle AGH</math> is the altitude of <math>\triangle ABC</math>, or <math>\frac{12}{\sqrt{7}}</math>. However, it's not too hard to see that <math>GB = HC = 1</math>, and therefore <math>[AGH] = [ABC]</math>. From here, we get that the area of <math>\triangle ABC</math> is <math>\frac{15\sqrt{7}}{14} \implies \boxed{036}</math>, by similarity. ~awang11
  

Revision as of 16:45, 12 March 2020

Note: Please do not post problems here until after the AIME.

Problem

Point $D$ lies on side $\overline{BC}$ of $\triangle ABC$ so that $\overline{AD}$ bisects $\angle BAC.$ The perpendicular bisector of $\overline{AD}$ intersects the bisectors of $\angle ABC$ and $\angle ACB$ in points $E$ and $F,$ respectively. Given that $AB=4,BC=5,$ and $CA=6,$ the area of $\triangle AEF$ can be written as $\tfrac{m\sqrt{n}}p,$ where $m$ and $p$ are relatively prime positive integers, and $n$ is a positive integer not divisible by the square of any prime. Find $m+n+p.$


Please thank awang11 for his amazing diagram: [asy]  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(18cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -10.645016481888238, xmax = 5.4445786933235505, ymin = 0.7766255516825293, ymax = 9.897545413994122;  /* image dimensions */ pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); pen rvwvcq = rgb(0.08235294117647059,0.396078431372549,0.7529411764705882);   draw((-6.837129089839387,8.163360372429347)--(-6.8268938290378,5.895596632024835)--(-4.33118398380513,6.851781504978754)--cycle, linewidth(2) + rvwvcq);  draw((-6.837129089839387,8.163360372429347)--(-8.31920210577661,4.188003838050227)--(-3.319253031309944,4.210570466954303)--cycle, linewidth(2) + rvwvcq);   /* draw figures */ draw((-6.837129089839387,8.163360372429347)--(-7.3192122908832715,4.192517163831042), linewidth(2) + wrwrwr);  draw((-7.3192122908832715,4.192517163831042)--(-2.319263216416622,4.2150837927351175), linewidth(2) + wrwrwr);  draw((-2.319263216416622,4.2150837927351175)--(-6.837129089839387,8.163360372429347), linewidth(2) + wrwrwr);  draw((xmin, -2.6100704119306224*xmin-9.68202796751058)--(xmax, -2.6100704119306224*xmax-9.68202796751058), linewidth(2) + wrwrwr); /* line */ draw((xmin, 0.3831314264278095*xmin + 8.511194202815297)--(xmax, 0.3831314264278095*xmax + 8.511194202815297), linewidth(2) + wrwrwr); /* line */ draw(circle((-6.8268938290378,5.895596632024835), 2.267786838055365), linewidth(2) + wrwrwr);  draw(circle((-4.33118398380513,6.851781504978754), 2.828427124746193), linewidth(2) + wrwrwr);  draw((xmin, 0.004513371749987873*xmin + 4.225551489816879)--(xmax, 0.004513371749987873*xmax + 4.225551489816879), linewidth(2) + wrwrwr); /* line */ draw((-7.3192122908832715,4.192517163831042)--(-4.33118398380513,6.851781504978754), linewidth(2) + wrwrwr);  draw((-6.8268938290378,5.895596632024835)--(-2.319263216416622,4.2150837927351175), linewidth(2) + wrwrwr);  draw((-6.837129089839387,8.163360372429347)--(-8.31920210577661,4.188003838050227), linewidth(2) + wrwrwr);  draw((xmin, 0.004513371749987873*xmin + 8.19421887771445)--(xmax, 0.004513371749987873*xmax + 8.19421887771445), linewidth(2) + wrwrwr); /* line */ draw((-3.837159645159393,8.176900349771794)--(-8.31920210577661,4.188003838050227), linewidth(2) + wrwrwr);  draw((-3.837159645159393,8.176900349771794)--(-5.3192326610966125,4.2015438153926725), linewidth(2) + wrwrwr);  draw((-6.837129089839387,8.163360372429347)--(-6.8268938290378,5.895596632024835), linewidth(2) + rvwvcq);  draw((-6.8268938290378,5.895596632024835)--(-4.33118398380513,6.851781504978754), linewidth(2) + rvwvcq);  draw((-4.33118398380513,6.851781504978754)--(-6.837129089839387,8.163360372429347), linewidth(2) + rvwvcq);  draw((-6.837129089839387,8.163360372429347)--(-8.31920210577661,4.188003838050227), linewidth(2) + rvwvcq);  draw((-8.31920210577661,4.188003838050227)--(-3.319253031309944,4.210570466954303), linewidth(2) + rvwvcq);  draw((-3.319253031309944,4.210570466954303)--(-6.837129089839387,8.163360372429347), linewidth(2) + rvwvcq);   /* dots and labels */ dot((-6.837129089839387,8.163360372429347),dotstyle);  label("$A$", (-6.8002301023571095,8.267690318323321), NE * labelscalefactor);  dot((-7.3192122908832715,4.192517163831042),dotstyle);  label("$B$", (-7.2808283997985,4.29753046989445), NE * labelscalefactor);  dot((-2.319263216416622,4.2150837927351175),linewidth(4pt) + dotstyle);  label("$C$", (-2.276337432963145,4.29753046989445), NE * labelscalefactor);  dot((-5.3192326610966125,4.2015438153926725),linewidth(4pt) + dotstyle);  label("$D$", (-5.274852897434433,4.287082680819637), NE * labelscalefactor);  dot((-6.8268938290378,5.895596632024835),linewidth(4pt) + dotstyle);  label("$F$", (-6.789782313282296,5.979624510939313), NE * labelscalefactor);  dot((-4.33118398380513,6.851781504978754),linewidth(4pt) + dotstyle);  label("$E$", (-4.292760724402025,6.93037331674728), NE * labelscalefactor);  dot((-8.31920210577661,4.188003838050227),linewidth(4pt) + dotstyle);  label("$G$", (-8.273368361905721,4.276634891744824), NE * labelscalefactor);  dot((-3.319253031309944,4.210570466954303),linewidth(4pt) + dotstyle);  label("$H$", (-3.2793251841451787,4.29753046989445), NE * labelscalefactor);  dot((-3.837159645159393,8.176900349771794),linewidth(4pt) + dotstyle);  label("$I$", (-3.7912668488110084,8.257242529248508), NE * labelscalefactor);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */ [/asy]

Solution

Points are defined as shown. It is pretty easy to show that $\triangle AFE \sim \triangle AGH$ by spiral similarity at $A$ by some short angle chasing. Now, note that $AD$ is the altitude of $\triangle AFE$, as the altitude of $AGH$. We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that $AD/2 = \frac{\sqrt{18}}{2}$, the altitude of $\triangle AFE$. Similarly, the altitude of $\triangle AGH$ is the altitude of $\triangle ABC$, or $\frac{12}{\sqrt{7}}$. However, it's not too hard to see that $GB = HC = 1$, and therefore $[AGH] = [ABC]$. From here, we get that the area of $\triangle ABC$ is $\frac{15\sqrt{7}}{14} \implies \boxed{036}$, by similarity. ~awang11

See Also

2020 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png