Difference between revisions of "2013 AMC 12B Problems/Problem 6"

(Problem)
(Problem was not correct (it was from another test not the 2013 AMC 10B))
Line 2: Line 2:
  
 
==Problem==
 
==Problem==
If <math>c</math> is a constant such that <math>9x^2+10x+c</math> is equal to the square of a binomial, then what is <math>c</math>?
+
Real numbers <math>x</math> and <math>y</math> satisfy the equation <math>x^2+y^2=10x-6y-34</math>. What is <math>x+y</math>?
  
 
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8</math>
 
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8</math>

Revision as of 17:35, 23 April 2020

The following problem is from both the 2013 AMC 12B #6 and 2013 AMC 10B #11, so both problems redirect to this page.

Problem

Real numbers $x$ and $y$ satisfy the equation $x^2+y^2=10x-6y-34$. What is $x+y$?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8$

Solution 1

If we move every term dependent on $x$ or $y$ to the LHS, we get $x^2 - 10x + y^2 + 6y = -34$. Adding $34$ to both sides, we have $x^2 - 10x + y^2 + 6y + 34 = 0$. Notice this is a circle with radius $0$, which only contains one point. We can split the $34$ into $25$ and $9$ to get $(x - 5)^2 + (y + 3)^2 = 0$. So, the only point is $(5, -3)$, so the sum is $5 + (-3) = 2 \implies \boxed{\textbf{(B)}}$. ~ asdf334

Solution 2

If we move every term including $x$ or $y$ to the LHS, we get \[x^2 - 10x + y^2 + 6y = -34.\] We can complete the square to find that this equation becomes \[(x - 5)^2 + (y + 3)^2 = 0.\] Since the square of any real number is nonnegative, we know that the sum is greater than or equal to $0$. Equality holds when the value inside the parhentheses is equal to $0$. We find that \[(x,y) = (5,-3)\] and the sum we are looking for is \[5+(-3)=2 \implies \boxed{\textbf{(B)}}.\] - Honestly


See Also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2013 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png