Difference between revisions of "2013 AIME II Problems/Problem 10"

(Undo revision 123782 by Kev1 (talk))
(Tag: Undo)
(Undo revision 123774 by Kev1 (talk))
(Tag: Undo)
Line 2: Line 2:
 
Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>.
 
Given a circle of radius <math>\sqrt{13}</math>, let <math>A</math> be a point at a distance <math>4 + \sqrt{13}</math> from the center <math>O</math> of the circle. Let <math>B</math> be the point on the circle nearest to point <math>A</math>. A line passing through the point <math>A</math> intersects the circle at points <math>K</math> and <math>L</math>. The maximum possible area for <math>\triangle BKL</math> can be written in the form <math>\frac{a - b\sqrt{c}}{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are positive integers, <math>a</math> and <math>d</math> are relatively prime, and <math>c</math> is not divisible by the square of any prime. Find <math>a+b+c+d</math>.
  
==Solution 1==
+
==Solution 2==
 
<asy>
 
<asy>
 
import math;
 
import math;

Revision as of 20:01, 4 June 2020

Problem 10

Given a circle of radius $\sqrt{13}$, let $A$ be a point at a distance $4 + \sqrt{13}$ from the center $O$ of the circle. Let $B$ be the point on the circle nearest to point $A$. A line passing through the point $A$ intersects the circle at points $K$ and $L$. The maximum possible area for $\triangle BKL$ can be written in the form $\frac{a - b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers, $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.

Solution 2

[asy] import math; import olympiad; import graph; pair A, B, K, L; B = (sqrt(13), 0); A=(4+sqrt(13), 0); dot(B); dot(A);  draw(Circle((0,0), sqrt(13))); label("$O$", (0,0), S);label("$B$", B, SW);label("$A$", A, S); dot((0,0));    [/asy]

Draw $OC$ perpendicular to $KL$ at $C$. Draw $BD$ perpendicular to $KL$ at $D$.

\[\frac{\triangle OKL}{\triangle BKL} = \frac{OC}{BD} = \frac{AO}{AB} = \frac{4+\sqrt{13}}{4}\]

Therefore, to maximize area of $\triangle BKL$, we need to maximize area of $\triangle OKL$.

\[\triangle OKL = \frac12 r^2 \sin{\angle KOL}\]

So when area of $\triangle OKL$ is maximized, $\angle KOL = \frac{\pi}{2}$.

Eventually, we get \[\triangle BKL=  (\frac12 \cdot \sqrt{13}^2)\cdot(\frac{4}{4+\sqrt{13}})=\frac{104-26\sqrt{13}}{3}\]

So the answer is $104+26+13+3=\boxed{146}$.

See Also

http://girlsangle.wordpress.com/2013/11/26/2013-aime-2-problem-10/

2013 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png