Difference between revisions of "2005 AMC 10A Problems/Problem 4"
(→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | A rectangle with a [[diagonal]] of length <math>x</math> is twice as long as | + | A rectangle with a [[diagonal]] of length <math>x</math> and the length is twice as long as the width. What is the area of the rectangle? |
<math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math> | <math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math> |
Revision as of 13:04, 7 December 2020
Problem
A rectangle with a diagonal of length and the length is twice as long as the width. What is the area of the rectangle?
Video Solution
CHECK OUT Video Solution: https://youtu.be/X8QyT5RR-_M
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.