Difference between revisions of "1985 AIME Problems/Problem 1"

m (box)
(See also)
Line 5: Line 5:
 
Since <math>x_n=\frac{n}{x_{n-1}}</math>, <math>x_n \cdot x_{n - 1} = n</math>.  Setting <math>n = 2, 4, 6</math> and <math>8</math> in this equation gives us respectively <math>x_1x_2 = 2</math>, <math>x_3x_4 = 4</math>, <math>x_5x_6 = 6</math> and <math>x_7x_8 = 8</math> so <math>x_1x_2x_3x_4x_5x_6x_7x_8 = 2\cdot4\cdot6\cdot8 = 384</math>.
 
Since <math>x_n=\frac{n}{x_{n-1}}</math>, <math>x_n \cdot x_{n - 1} = n</math>.  Setting <math>n = 2, 4, 6</math> and <math>8</math> in this equation gives us respectively <math>x_1x_2 = 2</math>, <math>x_3x_4 = 4</math>, <math>x_5x_6 = 6</math> and <math>x_7x_8 = 8</math> so <math>x_1x_2x_3x_4x_5x_6x_7x_8 = 2\cdot4\cdot6\cdot8 = 384</math>.
  
==See also==
+
== See also ==
 
{{AIME box|year=1985|before=First Question|num-a=2}}
 
{{AIME box|year=1985|before=First Question|num-a=2}}
 +
* [[AIME Problems and Solutions]]
 +
* [[American Invitational Mathematics Examination]]
 +
* [[Mathematics competition resources]]
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 13:31, 6 May 2007

Problem

Let $x_1=97$, and for $n>1$ let$x_n=\frac{n}{x_{n-1}}$. Calculate the product $x_1x_2x_3x_4x_5x_6x_7x_8$.

Solution

Since $x_n=\frac{n}{x_{n-1}}$, $x_n \cdot x_{n - 1} = n$. Setting $n = 2, 4, 6$ and $8$ in this equation gives us respectively $x_1x_2 = 2$, $x_3x_4 = 4$, $x_5x_6 = 6$ and $x_7x_8 = 8$ so $x_1x_2x_3x_4x_5x_6x_7x_8 = 2\cdot4\cdot6\cdot8 = 384$.

See also

1985 AIME (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions