Difference between revisions of "2019 AIME II Problems/Problem 7"
MRENTHUSIASM (talk | contribs) m (→Solution: Capitalized points, and minor edits.) |
|||
Line 2: | Line 2: | ||
Triangle <math>ABC</math> has side lengths <math>AB=120,BC=220</math>, and <math>AC=180</math>. Lines <math>\ell_A,\ell_B</math>, and <math>\ell_C</math> are drawn parallel to <math>\overline{BC},\overline{AC}</math>, and <math>\overline{AB}</math>, respectively, such that the intersections of <math>\ell_A,\ell_B</math>, and <math>\ell_C</math> with the interior of <math>\triangle ABC</math> are segments of lengths <math>55,45</math>, and <math>15</math>, respectively. Find the perimeter of the triangle whose sides lie on lines <math>\ell_A,\ell_B</math>, and <math>\ell_C</math>. | Triangle <math>ABC</math> has side lengths <math>AB=120,BC=220</math>, and <math>AC=180</math>. Lines <math>\ell_A,\ell_B</math>, and <math>\ell_C</math> are drawn parallel to <math>\overline{BC},\overline{AC}</math>, and <math>\overline{AB}</math>, respectively, such that the intersections of <math>\ell_A,\ell_B</math>, and <math>\ell_C</math> with the interior of <math>\triangle ABC</math> are segments of lengths <math>55,45</math>, and <math>15</math>, respectively. Find the perimeter of the triangle whose sides lie on lines <math>\ell_A,\ell_B</math>, and <math>\ell_C</math>. | ||
− | ==Solution== | + | ==Solution 1== |
− | Let the points of intersection of <math>\ | + | Let the points of intersection of <math>\ell_A, \ell_B,\ell_C</math> with <math>\triangle ABC</math> divide the sides into consecutive segments <math>BD,DE,EC,CF,FG,GA,AH,HI,IB</math>. Furthermore, let the desired triangle be <math>\triangle XYZ</math>, with <math>X</math> closest to side <math>BC</math>, <math>Y</math> closest to side <math>AC</math>, and <math>Z</math> closest to side <math>AB</math>. Hence, the desired perimeter is <math>XE+EF+FY+YG+GH+HZ+ZI+ID+DX=(DX+XE)+(FY+YG)+(HZ+ZI)+115</math> since <math>HG=55</math>, <math>EF=15</math>, and <math>ID=45</math>. |
Note that <math>\triangle AHG\sim \triangle BID\sim \triangle EFC\sim \triangle ABC</math>, so using similar triangle ratios, we find that <math>BI=HA=30</math>, <math>BD=HG=55</math>, <math>FC=\frac{45}{2}</math>, and <math>EC=\frac{55}{2}</math>. | Note that <math>\triangle AHG\sim \triangle BID\sim \triangle EFC\sim \triangle ABC</math>, so using similar triangle ratios, we find that <math>BI=HA=30</math>, <math>BD=HG=55</math>, <math>FC=\frac{45}{2}</math>, and <math>EC=\frac{55}{2}</math>. |
Revision as of 06:40, 3 July 2021
Contents
Problem
Triangle has side lengths , and . Lines , and are drawn parallel to , and , respectively, such that the intersections of , and with the interior of are segments of lengths , and , respectively. Find the perimeter of the triangle whose sides lie on lines , and .
Solution 1
Let the points of intersection of with divide the sides into consecutive segments . Furthermore, let the desired triangle be , with closest to side , closest to side , and closest to side . Hence, the desired perimeter is since , , and .
Note that , so using similar triangle ratios, we find that , , , and .
We also notice that and . Using similar triangles, we get that Hence, the desired perimeter is -ktong
Solution 2
Let the diagram be set up like that in Solution 1.
By similar triangles we have Thus
Since and , the altitude of from is half the altitude of from , say . Also since , the distance from to is . Therefore the altitude of from is .
By triangle scaling, the perimeter of is of that of , or
~ Nafer
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.