Difference between revisions of "2021 Fall AMC 12B Problems/Problem 12"

(Solution 1)
Line 1: Line 1:
==Problem 12==
+
==Problem==
Let <math>c = \frac{2\pi}{11}.</math> What is the value of
+
For <math>n</math> a positive integer, let <math>f(n)</math> be the quotient obtained when the sum of all positive divisors
<cmath>\frac{\sin 3c \cdot \sin 6c \cdot \sin 9c \cdot \sin 12c \cdot \sin 15c}{\sin c \cdot \sin 2c \cdot \sin 3c \cdot \sin 4c \cdot \sin 5c}?</cmath>
+
of n is divided by n. For example,
<math>\textbf{(A)}\ -1 \qquad\textbf{(B)}\ \frac{\sqrt{-11}}{5} \qquad\textbf{(C)}\ \frac{\sqrt{11}}{5} \qquad\textbf{(D)}\
+
<cmath>f(14)=(1+2+7+14)\div 14=\frac{12}{7}</cmath>
\frac{10}{11} \qquad\textbf{(E)}\ 1</math>
+
What is <math>f(768)-f(384)?</math>
 +
 
 +
<math>\textbf{(A)}\ \frac{1}{768} \qquad\textbf{(B)}\ \frac{1}{192} \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\
 +
\frac{4}{3} \qquad\textbf{(E)}\ \frac{8}{3}</math>
  
 
==Solution 1==
 
==Solution 1==

Revision as of 00:52, 24 November 2021

Problem

For $n$ a positive integer, let $f(n)$ be the quotient obtained when the sum of all positive divisors of n is divided by n. For example, \[f(14)=(1+2+7+14)\div 14=\frac{12}{7}\] What is $f(768)-f(384)?$

$\textbf{(A)}\ \frac{1}{768} \qquad\textbf{(B)}\ \frac{1}{192} \qquad\textbf{(C)}\ 1 \qquad\textbf{(D)}\ \frac{4}{3} \qquad\textbf{(E)}\ \frac{8}{3}$

Solution 1

The prime factorization of $768$ is $2^8*3$ and the prime factorization of $384$ is $2^7*3$ so \[f(768)=(1+\frac{1}{2}+\ldots+\frac{1}{256})(1+\frac{1}{3})=\frac{511}{192}\] \[f(384)=(1+\frac{1}{2}+\ldots+\frac{1}{128})(1+\frac{1}{3})=\frac{510}{192}\] so the difference is $\boxed{(B) \frac{1}{192}}$ ~lopkiloinm

See Also

2021 Fall AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png