Difference between revisions of "2012 AMC 8 Problems/Problem 4"

(Solution)
(Solution 2)
Line 8: Line 8:
  
 
==Solution 2==
 
==Solution 2==
Another way of doing this question is adding the slices separately. When Peter splits a slice of pizza into two, the equation is /frac{1}{2} of /frac{1}{12}. The answer, /frac{1}{24} added by /frac{1}{12} is the answer is \boxed{\textbf{(C)}\ \frac{1}{8}}$ of the pizza. ~SmartGrowth
+
Another way of doing this question is adding the slices separately. When Peter splits a slice of pizza into two, the equation is 1/2 of 1/12. The answer for the split half a piece, is 1/24. Adding by 1/12 is the answer which is 1/8 of the pizza.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2012|num-b=3|num-a=5}}
 
{{AMC8 box|year=2012|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:25, 20 December 2021

Problem

Peter's family ordered a 12-slice pizza for dinner. Peter ate one slice and shared another slice equally with his brother Paul. What fraction of the pizza did Peter eat?

$\textbf{(A)}\hspace{.05in}\frac{1}{24}\qquad\textbf{(B)}\hspace{.05in}\frac{1}{12}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{8}\qquad\textbf{(D)}\hspace{.05in}\frac{1}{6}\qquad\textbf{(E)}\hspace{.05in}\frac{1}{4}$

Solution 1

Peter ate $1 + \frac{1}{2} = \frac{3}{2}$ slices. The pizza has $12$ slices total. Taking the ratio of the amount of slices Peter ate to the amount of slices in the pizza, we find that Peter ate $\dfrac{\frac{3}{2}\text{ slices}}{12\text{ slices}} = \boxed{\textbf{(C)}\ \frac{1}{8}}$ of the pizza.

Solution 2

Another way of doing this question is adding the slices separately. When Peter splits a slice of pizza into two, the equation is 1/2 of 1/12. The answer for the split half a piece, is 1/24. Adding by 1/12 is the answer which is 1/8 of the pizza.

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png