Difference between revisions of "2021 Fall AMC 12B Problems/Problem 1"
MRENTHUSIASM (talk | contribs) m (→Problem) |
MRENTHUSIASM (talk | contribs) |
||
Line 7: | Line 7: | ||
== Solution 1 == | == Solution 1 == | ||
− | We see that <math>1, 2, 3,</math> and <math>4</math> each appear in the ones, tens, hundreds, and thousands digit exactly once. Since <math>1+2+3+4=10</math>, we find that the sum is equal to <cmath>10\cdot(1+10+100+1000)=\boxed{\textbf{(E) }11,110}.</cmath> | + | We see that <math>1, 2, 3,</math> and <math>4</math> each appear in the ones, tens, hundreds, and thousands digit exactly once. Since <math>1+2+3+4=10</math>, we find that the sum is equal to <cmath>10\cdot(1+10+100+1000)=\boxed{\textbf{(E)} \: 11{,}110}.</cmath> |
− | + | Note that it is equally valid to manually add all four numbers together to get the answer. | |
− | Note | ||
~kingofpineapplz | ~kingofpineapplz | ||
== Solution 2 == | == Solution 2 == | ||
− | We have | + | We have <cmath>1234 + 2341 + 3412 + 4123 = 1111 \left( 1 + 2 + 3 + 4 \right) = \boxed{\textbf{(E)} \: 11{,}110}.</cmath> |
− | <cmath> | ||
− | |||
− | 1234 + 2341 + 3412 + 4123 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
~Steven Chen (www.professorchenedu.com) | ~Steven Chen (www.professorchenedu.com) | ||
== Solution 3== | == Solution 3== | ||
− | We see that the units digit must be <math>0</math>, since <math>4+3+2+1</math> is <math>0</math>. But every digit from there, will be a <math>1</math> since we have that each time afterwards, we must carry the 1 from the previous sum. The answer choice that satisfies these conditions is <math>\boxed{\textbf{(E) }11,110}</math>. | + | We see that the units digit must be <math>0</math>, since <math>4+3+2+1</math> is <math>0</math>. But every digit from there, will be a <math>1</math> since we have that each time afterwards, we must carry the 1 from the previous sum. The answer choice that satisfies these conditions is <math>\boxed{\textbf{(E)} \: 11{,}110}</math>. |
+ | |||
~~stjwyl | ~~stjwyl | ||
+ | |||
==Video Solution by Interstigation== | ==Video Solution by Interstigation== | ||
https://youtu.be/p9_RH4s-kBA | https://youtu.be/p9_RH4s-kBA |
Revision as of 05:33, 3 January 2022
- The following problem is from both the 2021 Fall AMC 10B #1 and 2021 Fall AMC 12B #1, so both problems redirect to this page.
Contents
Problem
What is the value of
Solution 1
We see that and each appear in the ones, tens, hundreds, and thousands digit exactly once. Since , we find that the sum is equal to Note that it is equally valid to manually add all four numbers together to get the answer.
~kingofpineapplz
Solution 2
We have ~Steven Chen (www.professorchenedu.com)
Solution 3
We see that the units digit must be , since is . But every digit from there, will be a since we have that each time afterwards, we must carry the 1 from the previous sum. The answer choice that satisfies these conditions is .
~~stjwyl
Video Solution by Interstigation
See Also
2021 Fall AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.