Difference between revisions of "2022 AIME II Problems/Problem 4"
Mathfun1000 (talk | contribs) m (Blanked the page) (Tag: Blanking) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | There is a positive real number <math>x</math> not equal to either <math>\tfrac{1}{20}</math> or <math>\tfrac{1}{2}</math> such that<cmath>\log_{20x} (22x)=\log_{2x} (202x).</cmath>The value <math>\log_{20x} (22x)</math> can be written as <math>\log_{10} (\tfrac{m}{n})</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | ==See Also== | ||
+ | {{AIME box|year=2022|n=II|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Revision as of 22:13, 17 February 2022
Problem
There is a positive real number not equal to either or such thatThe value can be written as , where and are relatively prime positive integers. Find .
Solution
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.