Difference between revisions of "2022 AIME II Problems/Problem 8"

m (Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
 +
==Problem==
  
 +
Find the number of positive integers <math>n \le 600</math> whose value can be uniquely determined when the values of <math>\left\lfloor \frac n4\right\rfloor</math>, <math>\left\lfloor\frac n5\right\rfloor</math>, and <math>\left\lfloor\frac n6\right\rfloor</math> are given, where <math>\lfloor x \rfloor</math> denotes the greatest integer less than or equal to the real number <math>x</math>.
 +
 +
==Solution==
 +
 +
==See Also==
 +
{{AIME box|year=2022|n=II|num-b=7|num-a=9}}
 +
{{MAA Notice}}

Revision as of 07:24, 18 February 2022

Problem

Find the number of positive integers $n \le 600$ whose value can be uniquely determined when the values of $\left\lfloor \frac n4\right\rfloor$, $\left\lfloor\frac n5\right\rfloor$, and $\left\lfloor\frac n6\right\rfloor$ are given, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to the real number $x$.

Solution

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png