Difference between revisions of "2022 AIME II Problems/Problem 9"

m (Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
 +
==Problem==
  
 +
Let <math>\ell_A</math> and <math>\ell_B</math> be two distinct parallel lines. For positive integers <math>m</math> and <math>n</math>, distinct points <math>A_1, A_2, \allowbreak A_3, \allowbreak \ldots, \allowbreak A_m</math> lie on <math>\ell_A</math>, and distinct points <math>B_1, B_2, B_3, \ldots, B_n</math> lie on <math>\ell_B</math>. Additionally, when segments <math>\overline{A_iB_j}</math> are drawn for all <math>i=1,2,3,\ldots, m</math> and <math>j=1,\allowbreak 2,\allowbreak 3, \ldots, \allowbreak n</math>, no point strictly between <math>\ell_A</math> and <math>\ell_B</math> lies on more than two of the segments. Find the number of bounded regions into which this figure divides the plane when <math>m=7</math> and <math>n=5</math>. The figure shows that there are 8 regions when <math>m=3</math> and <math>n=2</math>.
 +
<asy>
 +
import geometry;
 +
size(10cm);
 +
draw((-2,0)--(13,0));
 +
draw((0,4)--(10,4));
 +
label("$\ell_A$",(-2,0),W);
 +
label("$\ell_B$",(0,4),W);
 +
point A1=(0,0),A2=(5,0),A3=(11,0),B1=(2,4),B2=(8,4),I1=extension(B1,A2,A1,B2),I2=extension(B1,A3,A1,B2),I3=extension(B1,A3,A2,B2);
 +
draw(B1--A1--B2);
 +
draw(B1--A2--B2);
 +
draw(B1--A3--B2);
 +
label("$A_1$",A1,S);
 +
label("$A_2$",A2,S);
 +
label("$A_3$",A3,S);
 +
label("$B_1$",B1,N);
 +
label("$B_2$",B2,N);
 +
label("1",centroid(A1,B1,I1));
 +
label("2",centroid(B1,I1,I3));
 +
label("3",centroid(B1,B2,I3));
 +
label("4",centroid(A1,A2,I1));
 +
label("5",(A2+I1+I2+I3)/4);
 +
label("6",centroid(B2,I2,I3));
 +
label("7",centroid(A2,A3,I2));
 +
label("8",centroid(A3,B2,I2));
 +
dot(A1);
 +
dot(A2);
 +
dot(A3);
 +
dot(B1);
 +
dot(B2);
 +
</asy>
 +
 +
==Solution==
 +
 +
==See Also==
 +
{{AIME box|year=2022|n=II|num-b=8|num-a=10}}
 +
{{MAA Notice}}

Revision as of 07:26, 18 February 2022

Problem

Let $\ell_A$ and $\ell_B$ be two distinct parallel lines. For positive integers $m$ and $n$, distinct points $A_1, A_2, \allowbreak A_3, \allowbreak \ldots, \allowbreak A_m$ lie on $\ell_A$, and distinct points $B_1, B_2, B_3, \ldots, B_n$ lie on $\ell_B$. Additionally, when segments $\overline{A_iB_j}$ are drawn for all $i=1,2,3,\ldots, m$ and $j=1,\allowbreak 2,\allowbreak 3, \ldots, \allowbreak n$, no point strictly between $\ell_A$ and $\ell_B$ lies on more than two of the segments. Find the number of bounded regions into which this figure divides the plane when $m=7$ and $n=5$. The figure shows that there are 8 regions when $m=3$ and $n=2$. [asy] import geometry; size(10cm); draw((-2,0)--(13,0)); draw((0,4)--(10,4)); label("$\ell_A$",(-2,0),W); label("$\ell_B$",(0,4),W); point A1=(0,0),A2=(5,0),A3=(11,0),B1=(2,4),B2=(8,4),I1=extension(B1,A2,A1,B2),I2=extension(B1,A3,A1,B2),I3=extension(B1,A3,A2,B2); draw(B1--A1--B2); draw(B1--A2--B2); draw(B1--A3--B2); label("$A_1$",A1,S); label("$A_2$",A2,S); label("$A_3$",A3,S); label("$B_1$",B1,N); label("$B_2$",B2,N); label("1",centroid(A1,B1,I1)); label("2",centroid(B1,I1,I3)); label("3",centroid(B1,B2,I3)); label("4",centroid(A1,A2,I1)); label("5",(A2+I1+I2+I3)/4); label("6",centroid(B2,I2,I3)); label("7",centroid(A2,A3,I2)); label("8",centroid(A3,B2,I2)); dot(A1); dot(A2); dot(A3); dot(B1); dot(B2); [/asy]

Solution

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png