Difference between revisions of "2022 AIME II Problems/Problem 13"

m (Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
 +
==Problem==
  
 +
There is a polynomial <math>P(x)</math> with integer coefficients such that<cmath>P(x)=\frac{(x^{2310}-1)^6}{(x^{105}-1)(x^{70}-1)(x^{42}-1)(x^{30}-1)}</cmath>holds for every <math>0<x<1.</math> Find the coefficient of <math>x^{2022}</math> in <math>P(x)</math>.
 +
==Solution==
 +
 +
==See Also==
 +
{{AIME box|year=2022|n=II|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 07:28, 18 February 2022

Problem

There is a polynomial $P(x)$ with integer coefficients such that\[P(x)=\frac{(x^{2310}-1)^6}{(x^{105}-1)(x^{70}-1)(x^{42}-1)(x^{30}-1)}\]holds for every $0<x<1.$ Find the coefficient of $x^{2022}$ in $P(x)$.

Solution

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png