Difference between revisions of "2022 AIME II Problems/Problem 15"

m (Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
 +
==Problem==
  
 +
Two externally tangent circles <math>\omega_1</math> and <math>\omega_2</math> have centers <math>O_1</math> and <math>O_2</math>, respectively. A third circle <math>\Omega</math> passing through <math>O_1</math> and <math>O_2</math> intersects <math>\omega_1</math> at <math>B</math> and <math>C</math> and <math>\omega_2</math> at <math>A</math> and <math>D</math>, as shown. Suppose that <math>AB = 2</math>, <math>O_1O_2 = 15</math>, <math>CD = 16</math>, and <math>ABO_1CDO_2</math> is a convex hexagon. Find the area of this hexagon.
 +
<asy>
 +
import geometry;
 +
size(10cm);
 +
point O1=(0,0),O2=(15,0),B=9*dir(30);
 +
circle w1=circle(O1,9),w2=circle(O2,6),o=circle(O1,O2,B);
 +
point A=intersectionpoints(o,w2)[1],D=intersectionpoints(o,w2)[0],C=intersectionpoints(o,w1)[0];
 +
filldraw(A--B--O1--C--D--O2--cycle,0.2*red+white,black);
 +
draw(w1);
 +
draw(w2);
 +
draw(O1--O2,dashed);
 +
draw(o);
 +
dot(O1);
 +
dot(O2);
 +
dot(A);
 +
dot(D);
 +
dot(C);
 +
dot(B);
 +
label("$\omega_1$",8*dir(110),SW);
 +
label("$\omega_2$",5*dir(70)+(15,0),SE);
 +
label("$O_1$",O1,W);
 +
label("$O_2$",O2,E);
 +
label("$B$",B,N+1/2*E);
 +
label("$A$",A,N+1/2*W);
 +
label("$C$",C,S+1/4*W);
 +
label("$D$",D,S+1/4*E);
 +
label("$15$",midpoint(O1--O2),N);
 +
label("$16$",midpoint(C--D),N);
 +
label("$2$",midpoint(A--B),S);
 +
label("$\Omega$",o.C+(o.r-1)*dir(270));
 +
</asy>
 +
 +
==Solution==
 +
 +
==See Also==
 +
{{AIME box|year=2022|n=I|num-b=14|after=Last Problem}}
 +
{{MAA Notice}}

Revision as of 07:29, 18 February 2022

Problem

Two externally tangent circles $\omega_1$ and $\omega_2$ have centers $O_1$ and $O_2$, respectively. A third circle $\Omega$ passing through $O_1$ and $O_2$ intersects $\omega_1$ at $B$ and $C$ and $\omega_2$ at $A$ and $D$, as shown. Suppose that $AB = 2$, $O_1O_2 = 15$, $CD = 16$, and $ABO_1CDO_2$ is a convex hexagon. Find the area of this hexagon. [asy] import geometry; size(10cm); point O1=(0,0),O2=(15,0),B=9*dir(30); circle w1=circle(O1,9),w2=circle(O2,6),o=circle(O1,O2,B); point A=intersectionpoints(o,w2)[1],D=intersectionpoints(o,w2)[0],C=intersectionpoints(o,w1)[0]; filldraw(A--B--O1--C--D--O2--cycle,0.2*red+white,black); draw(w1); draw(w2); draw(O1--O2,dashed); draw(o); dot(O1); dot(O2); dot(A); dot(D); dot(C); dot(B); label("$\omega_1$",8*dir(110),SW); label("$\omega_2$",5*dir(70)+(15,0),SE); label("$O_1$",O1,W); label("$O_2$",O2,E); label("$B$",B,N+1/2*E); label("$A$",A,N+1/2*W); label("$C$",C,S+1/4*W); label("$D$",D,S+1/4*E); label("$15$",midpoint(O1--O2),N); label("$16$",midpoint(C--D),N); label("$2$",midpoint(A--B),S); label("$\Omega$",o.C+(o.r-1)*dir(270)); [/asy]

Solution

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png