Difference between revisions of "2022 AIME II Problems/Problem 15"
Line 33: | Line 33: | ||
</asy> | </asy> | ||
− | ==Solution== | + | ==Solution 1== |
First observe that <math>AO_2 = O_2D</math> and <math>BO_1 = O_1C</math>. Let points <math>A'</math> and <math>B'</math> be the reflections of <math>A</math> and <math>B</math>, respectively, about the perpendicular bisector of <math>\overline{O_1O_2}</math>. Then quadrilaterals <math>ABO_1O_2</math> and <math>A'B'O_2O_1</math> are congruent, so hexagons <math>ABO_1CDO_2</math> and <math>B'A'O_1CDO_2</math> have the same area. Furthermore, triangles <math>DO_2B'</math> and <math>A'O_1C</math> are congruent, so <math>B'D = A'C</math> and quadrilateral <math>B'A'CD</math> is an isosceles trapezoid. | First observe that <math>AO_2 = O_2D</math> and <math>BO_1 = O_1C</math>. Let points <math>A'</math> and <math>B'</math> be the reflections of <math>A</math> and <math>B</math>, respectively, about the perpendicular bisector of <math>\overline{O_1O_2}</math>. Then quadrilaterals <math>ABO_1O_2</math> and <math>A'B'O_2O_1</math> are congruent, so hexagons <math>ABO_1CDO_2</math> and <math>B'A'O_1CDO_2</math> have the same area. Furthermore, triangles <math>DO_2B'</math> and <math>A'O_1C</math> are congruent, so <math>B'D = A'C</math> and quadrilateral <math>B'A'CD</math> is an isosceles trapezoid. | ||
<asy> | <asy> | ||
Line 64: | Line 64: | ||
~djmathman | ~djmathman | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | Denote by <math>O</math> the center of <math>\Omega</math>. | ||
+ | Denote by <math>r</math> the radius of <math>\Omega</math>. | ||
+ | |||
+ | We have <math>O_1</math>, <math>O_2</math>, <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math> are all on circle <math>\Omega</math>. | ||
+ | |||
+ | Denote <math>\angle O_1 O O_2 = 2 \theta</math>. | ||
+ | Denote <math>\angle O_1 O B = \alpha</math>. | ||
+ | Denote <math>\angle O_2 O A = \beta</math>. | ||
+ | |||
+ | Because <math>B</math> and <math>C</math> are on circles <math>\omega_1</math> and <math>\Omega</math>, <math>BC</math> is a perpendicular bisector of <math>O_1 O</math>. Hence, <math>\angle O_1 O C = \alpha</math>. | ||
+ | |||
+ | Because <math>A</math> and <math>D</math> are on circles <math>\omega_2</math> and <math>\Omega</math>, <math>AD</math> is a perpendicular bisector of <math>O_2 O</math>. Hence, <math>\angle O_2 O D = \beta</math>. | ||
+ | |||
+ | In <math>\triangle O O_1 O_2</math>, | ||
+ | <cmath> | ||
+ | \[ | ||
+ | O_1 O_2 = 2 r \sin \theta . | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Hence, | ||
+ | <cmath> | ||
+ | \[ | ||
+ | 2 r \sin \theta = 15 . | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | In <math>\triangle O AB</math>, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | AB & = 2 r \sin \frac{2 \theta - \alpha - \beta}{2} \\ | ||
+ | & = 2 r \sin \theta \cos \frac{\alpha + \beta}{2} | ||
+ | - 2 r \cos \theta \sin \frac{\alpha + \beta}{2} \\ | ||
+ | & = 15 \cos \frac{\alpha + \beta}{2} | ||
+ | - 2 r \cos \theta \sin \frac{\alpha + \beta}{2} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, | ||
+ | <cmath> | ||
+ | \[ | ||
+ | 15 \cos \frac{\alpha + \beta}{2} | ||
+ | - 2 r \cos \theta \sin \frac{\alpha + \beta}{2} | ||
+ | = 2 . \hspace{1cm} (1) | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | |||
+ | In <math>\triangle O CD</math>, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | CD & = 2 r \sin \frac{360^\circ - 2 \theta - \alpha - \beta}{2} \\ | ||
+ | & = 2 r \sin \left( \theta + \frac{\alpha + \beta}{2} \right) \\ | ||
+ | & = 2 r \sin \theta \cos \frac{\alpha + \beta}{2} | ||
+ | + 2 r \cos \theta \sin \frac{\alpha + \beta}{2} \\ | ||
+ | & = 15 \cos \frac{\alpha + \beta}{2} | ||
+ | + 2 r \cos \theta \sin \frac{\alpha + \beta}{2} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, | ||
+ | <cmath> | ||
+ | \[ | ||
+ | 15 \cos \frac{\alpha + \beta}{2} | ||
+ | + 2 r \cos \theta \sin \frac{\alpha + \beta}{2} | ||
+ | = 16 . \hspace{1cm} (2) | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Taking <math>\frac{(1) + (2)}{30}</math>, we get <math>\cos \frac{\alpha + \beta}{2} = \frac{3}{5}</math>. | ||
+ | Thus, <math>\sin \frac{\alpha + \beta}{2} = \frac{4}{5}</math>. | ||
+ | |||
+ | Taking these into (1), we get <math>2 r \cos \theta = \frac{35}{4}</math>. | ||
+ | Hence, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | 2 r & = \sqrt{ \left( 2 r \sin \theta \right)^2 + \left( 2 r \cos \theta \right)^2} \\ | ||
+ | & = \frac{5}{4} \sqrt{193} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, <math>\cos \theta = \frac{7}{\sqrt{193}}</math>. | ||
+ | |||
+ | In <math>\triangle O O_1 B</math>, | ||
+ | <cmath> | ||
+ | \[ | ||
+ | O_1 B = 2 r \sin \frac{\alpha}{2} . | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | In <math>\triangle O O_2 A</math>, by applying the law of sines, we get | ||
+ | <cmath> | ||
+ | \[ | ||
+ | O_2 A = 2 r \sin \frac{\beta}{2} . | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Because circles <math>\omega_1</math> and <math>\omega_2</math> are externally tangent, <math>B</math> is on circle <math>\omega_1</math>, <math>A</math> is on circle <math>\omega_2</math>, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | O_1 O_2 & = O_1 B + O_2 A \\ | ||
+ | & = 2 r \sin \frac{\alpha}{2} + 2 r \sin \frac{\beta}{2} \\ | ||
+ | & = 2 r \left( \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} \right) . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Thus, <math>\sin \frac{\alpha}{2} + \sin \frac{\beta}{2} = \frac{12}{\sqrt{193}}</math>. | ||
+ | |||
+ | Now, we compute <math>\sin \alpha</math> and <math>\sin \beta</math>. | ||
+ | |||
+ | Recall <math>\cos \frac{\alpha + \beta}{2} = \frac{3}{5}</math> and <math>\sin \frac{\alpha + \beta}{2} = \frac{4}{5}</math>. | ||
+ | Thus, <math>e^{i \frac{\alpha}{2}} e^{i \frac{\beta}{2}} = e^{i \frac{\alpha + \beta}{2}} = \frac{3}{5} + i \frac{4}{5}</math>. | ||
+ | |||
+ | We also have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} | ||
+ | & = \frac{1}{2i} \left( e^{i \frac{\alpha}{2}} - e^{-i \frac{\alpha}{2}} | ||
+ | + e^{i \frac{\beta}{2}} - e^{-i \frac{\beta}{2}} \right) \\ | ||
+ | & = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \frac{\alpha + \beta}{2}} } \right) | ||
+ | \left( e^{i \frac{\alpha}{2}} + e^{i \frac{\beta}{2}} \right) | ||
+ | . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Thus, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \sin \alpha + \sin \beta | ||
+ | & = \frac{1}{2i} \left( e^{i \alpha} - e^{-i \alpha} | ||
+ | + e^{i \beta} - e^{-i \beta} \right) \\ | ||
+ | & = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \left( \alpha + \beta \right)}} \right) | ||
+ | \left( e^{i \alpha} + e^{i \beta} \right) \\ | ||
+ | & = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \left( \alpha + \beta \right)}} \right) | ||
+ | \left( | ||
+ | \left( e^{i \frac{\alpha}{2}} + e^{i \frac{\beta}{2}} \right)^2 | ||
+ | - 2 e^{i \frac{\alpha + \beta}{2}} | ||
+ | \right) \\ | ||
+ | & = \frac{1}{2i} \left( 1 - \frac{1}{e^{i \left( \alpha + \beta \right)}} \right) | ||
+ | \left( | ||
+ | \left( \frac{2 i \left( \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} \right)}{1 - \frac{1}{e^{i \frac{\alpha + \beta}{2}} }} \right)^2 | ||
+ | - 2 e^{i \frac{\alpha + \beta}{2}} | ||
+ | \right) \\ | ||
+ | & = - \frac{1}{i} \left( e^{i \frac{\alpha + \beta}{2}} - e^{-i \frac{\alpha + \beta}{2}} \right) | ||
+ | \left( | ||
+ | \frac{2 \left( \sin \frac{\alpha}{2} + \sin \frac{\beta}{2} \right)^2} | ||
+ | {e^{i \frac{\alpha + \beta}{2}} + e^{-i \frac{\alpha + \beta}{2}} - 2 } | ||
+ | + 1 | ||
+ | \right) \\ | ||
+ | & = \frac{167 \cdot 8}{193 \cdot 5 } . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | {\rm Area} \ ABO_1CDO_2 | ||
+ | & = {\rm Area} \ \triangle O_3 AB + {\rm Area} \ \triangle O_3 BO_1 | ||
+ | + {\rm Area} \ \triangle O_3 O_1 C \\ | ||
+ | & \quad + {\rm Area} \ \triangle O_3 C D | ||
+ | + {\rm Area} \ \triangle O_3 D O_2 + {\rm Area} \ \triangle O_3 O_2 A \\ | ||
+ | & = \frac{1}{2} r^2 \left( | ||
+ | \sin \left( 2 \theta - \alpha - \beta \right) + \sin \alpha + \sin \alpha | ||
+ | + \sin \left( 360^\circ - 2 \theta - \alpha - \beta \right) | ||
+ | + \sin \beta + \sin \beta \right) \\ | ||
+ | & = \frac{1}{2} r^2 \left( | ||
+ | \sin \left( 2 \theta - \alpha - \beta \right) | ||
+ | - \sin \left( 2 \theta + \alpha + \beta \right) | ||
+ | + 2 \sin \alpha + 2 \sin \beta | ||
+ | \right) \\ | ||
+ | & = r^2 \left( | ||
+ | - \cos 2 \theta \sin \left( \alpha + \beta \right) | ||
+ | + \sin \alpha + \sin \beta | ||
+ | \right) \\ | ||
+ | & = r^2 \left( \left( 1 - 2 \cos^2 \theta \right) 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha + \beta}{2} | ||
+ | + \sin \alpha + \sin \beta \right) \\ | ||
+ | & = \boxed{\textbf{(140) }} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | ~Steven Chen (www.professorchenedu.com) | ||
==See Also== | ==See Also== |
Revision as of 20:44, 18 February 2022
Contents
Problem
Two externally tangent circles and have centers and , respectively. A third circle passing through and intersects at and and at and , as shown. Suppose that , , , and is a convex hexagon. Find the area of this hexagon.
Solution 1
First observe that and . Let points and be the reflections of and , respectively, about the perpendicular bisector of . Then quadrilaterals and are congruent, so hexagons and have the same area. Furthermore, triangles and are congruent, so and quadrilateral is an isosceles trapezoid. Next, remark that , so quadrilateral is also an isosceles trapezoid; in turn, , and similarly . Thus, Ptolmey's theorem on yields , whence . Let . The Law of Cosines on triangle yields and hence . Thus the distance between bases and is (in fact, is a triangle with a triangle removed), which implies the area of is .
Now let and ; the tangency of circles and implies . Furthermore, angles and are opposite angles in cyclic quadrilateral , which implies the measure of angle is . Therefore, the Law of Cosines applied to triangle yields
Thus , and so the area of triangle is .
Thus, the area of hexagon is .
~djmathman
Solution 2
Denote by the center of . Denote by the radius of .
We have , , , , , are all on circle .
Denote . Denote . Denote .
Because and are on circles and , is a perpendicular bisector of . Hence, .
Because and are on circles and , is a perpendicular bisector of . Hence, .
In ,
Hence,
In ,
Hence,
In ,
Hence,
Taking , we get . Thus, .
Taking these into (1), we get . Hence,
Hence, .
In ,
In , by applying the law of sines, we get
Because circles and are externally tangent, is on circle , is on circle ,
Thus, .
Now, we compute and .
Recall and . Thus, .
We also have
Thus,
Therefore,
~Steven Chen (www.professorchenedu.com)
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.