Difference between revisions of "2022 AIME II Problems/Problem 11"

(Solution 2)
(Solution 3 (Visual))
Line 88: Line 88:
  
 
==Solution 3 (Visual)==
 
==Solution 3 (Visual)==
 
+
[[File:AIME 2022 11a.png|300px|right]]
 
<b><i>Lemma</b></i>
 
<b><i>Lemma</b></i>
  
Line 94: Line 94:
  
 
<b><i> Proof</b></i>
 
<b><i> Proof</b></i>
 +
 
Let <math>A = 2\alpha.</math> Then <math>\angle DBC = \angle DCB = \alpha.</math>
 
Let <math>A = 2\alpha.</math> Then <math>\angle DBC = \angle DCB = \alpha.</math>
  
Let <math>E</math> be the intersection point of the perpendicular dropped from <math>D</math> to <math>AB</math><math> with the circle.
+
Let <math>E</math> be the intersection point of the perpendicular dropped from <math>D</math> to <math>AB</math> with the circle.
Then the sum of arcs </math>BE + AC + CD = π. BE = π – AC.<math>
+
 
Let </math>E'<math> be the point of intersection of the line </math>CM$ with the circle.
+
Then the sum of arcs <math>\overset{\Large\frown} {BE} + \overset{\Large\frown}{AC} + \overset{\Large\frown}{CD} = \pi.</math>
 +
<cmath>\overset{\Large\frown} {BE} = \pi 2\alpha \overset{\Large\frown}{AC}.</cmath>
 +
 
 +
Let <math>E'</math> be the point of intersection of the line <math>CM</math> with the circle.
 +
<math>CM</math> is perpendicular to <math>AD, \angle AMC = \frac {\pi}{2} – \alpha,</math> the sum of arcs  <math>\overset{\Large\frown}{A}C +  \overset{\Large\frown}{BE'} = \pi – 2\alpha,</math> hence <math>E'</math> coincides with <math>E.</math>
 +
 
 +
The inscribed angles <math>\angle DEM = \angle DEB, M</math> is symmetric to <math>B</math> with respect to <math>DE, DM = DB.</math>
 +
 
 +
<b><i> Solution</b></i>
 +
 
 +
Let <math>AB' = AB, DC' = DC, B'</math> and <math>C'</math> on <math>AD.</math>
 +
Then <math>AB' = 2, DC' = 3, B'C' = 2 = AB'.</math>
  
 +
Quadrilateral  <math>ABMC'</math> is inscribed.
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2022|n=II|num-b=10|num-a=12}}
 
{{AIME box|year=2022|n=II|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 14:34, 1 June 2022

Problem

Let $ABCD$ be a convex quadrilateral with $AB=2$, $AD=7$, and $CD=3$ such that the bisectors of acute angles $\angle{DAB}$ and $\angle{ADC}$ intersect at the midpoint of $\overline{BC}$. Find the square of the area of $ABCD$.

Solution 1

2022 AIME II Q11(Hand-draw picture)


According to the problem, we have $AB=AB'=2$, $DC=DC'=3$, $MB=MB'$, $MC=MC'$, and $B'C'=7-2-3=2$

Because $M$ is the midpoint of $BC$, we have $BM=MC$, so: \[MB=MB'=MC'=MC.\]

Then, we can see that $\bigtriangleup{MB'C'}$ is an isosceles triangle with $MB'=MC'$

Therefore, we could start our angle chasing: $\angle{MB'C'}=\angle{MC'B'}=180^\circ-\angle{MC'D}=180^\circ-\angle{MCD}$.

This is when we found that points $M$, $C$, $D$, and $B'$ are on a circle. Thus, $\angle{BMB'}=\angle{CDC'} \Rightarrow \angle{B'MA}=\angle{C'DM}$. This is the time we found that $\bigtriangleup{AB'M} \sim \bigtriangleup{MC'D}$.

Thus, $\frac{AB'}{B'M}=\frac{MC'}{C'D} \Longrightarrow (BM')^2=AB' \cdot C'D = 6$

Point $H$ is the midpoint of $B'C'$, and $MH \perp AD$. $B'H=HC'=1 \Longrightarrow MH=\sqrt{B'M^2-B'H^2}=\sqrt{6-1}=\sqrt{5}$.

The area of this quadrilateral is the sum of areas of triangles: \[S_{\bigtriangleup{ABM}}+S_{\bigtriangleup{AB'M}}+S_{\bigtriangleup{CDM}}+S_{\bigtriangleup{CD'M}}+S_{\bigtriangleup{B'C'M}}\] \[=S_{\bigtriangleup{AB'M}}\cdot 2 + S_{\bigtriangleup{B'C'M}} + S_{\bigtriangleup{C'DM}}\cdot 2\] \[=2 \cdot \frac{1}{2} \cdot AB' \cdot MH + \frac{1}{2} \cdot B'C' \cdot MH + 2 \cdot \frac{1}{2} \cdot C'D \cdot MH\] \[=2\sqrt{5}+\sqrt{5}+3\sqrt{5}=6\sqrt{5}\]

Finally, the square of the area is $(6\sqrt{5})^2=\boxed{180}$

~DSAERF-CALMIT (https://binaryphi.site)

Solution 2

Denote by $M$ the midpoint of segment $BC$. Let points $P$ and $Q$ be on segment $AD$, such that $AP = AB$ and $DQ = DC$.

Denote $\angle DAM = \alpha$, $\angle BAD = \beta$, $\angle BMA = \theta$, $\angle CMD = \phi$.

Denote $BM = x$. Because $M$ is the midpoint of $BC$, $CM = x$.

Because $AM$ is the angle bisector of $\angle BAD$ and $AB = AP$, $\triangle BAM \cong \triangle PAM$. Hence, $MP = MB$ and $\angle AMP = \theta$. Hence, $\angle MPD = \angle MAP + \angle PMA = \alpha + \theta$.

Because $DM$ is the angle bisector of $\angle CDA$ and $DC = DQ$, $\triangle CDM \cong \triangle QDM$. Hence, $MQ = MC$ and $\angle DMQ = \phi$. Hence, $\angle MQA = \angle MDQ + \angle QMD = \beta + \phi$.

Because $M$ is the midpoint of segment $BC$, $MB = MC$. Because $MP = MB$ and $MQ = MC$, $MP = MQ$.

Thus, $\angle MPD = \angle MQA$.

Thus, \[ \alpha + \theta = \beta + \phi . \hspace{1cm} (1) \]

In $\triangle AMD$, $\angle AMD = 180^\circ - \angle MAD - \angle MDA = 180^\circ - \alpha - \beta$. In addition, $\angle AMD = 180^\circ - \angle BMA - \angle CMD = 180^\circ - \theta - \phi$. Thus, \[ \alpha + \beta = \theta + \phi . \hspace{1cm} (2) \]

Taking $(1) + (2)$, we get $\alpha = \phi$. Taking $(1) - (2)$, we get $\beta = \theta$.

Therefore, $\triangle ADM \sim \triangle AMB \sim \triangle MDC$.

Hence, $\frac{AD}{AM} = \frac{AM}{AB}$ and $\frac{AD}{DM} = \frac{DM}{CD}$. Thus, $AM = \sqrt{AD \cdot AD} = \sqrt{14}$ and $DM = \sqrt{AD \cdot CD} = \sqrt{21}$.

In $\triangle ADM$, by applying the law of cosines, $\cos \angle AMD  = \frac{AM^2 + DM^2 - AD^2}{2 AM \cdot DM} = - \frac{1}{\sqrt{6}}$. Hence, $\sin \angle AMD = \sqrt{1 - \cos^2 \angle AMD} = \frac{\sqrt{5}}{\sqrt{6}}$. Hence, ${\rm Area} \ \triangle ADM = \frac{1}{2} AM \cdot DM \dot \sin \angle AMD = \frac{7 \sqrt{5}}{2}$.

Therefore, \begin{align*} {\rm Area} \ ABCD & = {\rm Area} \ \triangle AMD + {\rm Area} \ \triangle ABM + {\rm Area} \ \triangle MCD \\ & = {\rm Area} \ \triangle AMD \left( 1 + \left( \frac{AM}{AD} \right)^2 + \left( \frac{MD}{AD} \right)^2 \right) \\ & = 6 \sqrt{5} . \end{align*}

Therefore, the square of ${\rm Area} \ ABCD$ is $\left( 6 \sqrt{5} \right)^2 = \boxed{\textbf{(180) }}$.

~Steven Chen (www.professorchenedu.com)

Solution 3 (Visual)

AIME 2022 11a.png

Lemma

In the triangle $ABC, AB = 2AC, M$ is the midpoint of $AB. D$ is the point of intersection of the circumscribed circle and the bisector of angle $A.$ Then $DM = BD.$

Proof

Let $A = 2\alpha.$ Then $\angle DBC = \angle DCB = \alpha.$

Let $E$ be the intersection point of the perpendicular dropped from $D$ to $AB$ with the circle.

Then the sum of arcs $\overset{\Large\frown} {BE} + \overset{\Large\frown}{AC} + \overset{\Large\frown}{CD} = \pi.$ \[\overset{\Large\frown} {BE} = \pi – 2\alpha – \overset{\Large\frown}{AC}.\]

Let $E'$ be the point of intersection of the line $CM$ with the circle. $CM$ is perpendicular to $AD, \angle AMC = \frac {\pi}{2} – \alpha,$ the sum of arcs $\overset{\Large\frown}{A}C +  \overset{\Large\frown}{BE'} = \pi – 2\alpha,$ hence $E'$ coincides with $E.$

The inscribed angles $\angle DEM = \angle DEB, M$ is symmetric to $B$ with respect to $DE, DM = DB.$

Solution

Let $AB' = AB, DC' = DC, B'$ and $C'$ on $AD.$ Then $AB' = 2, DC' = 3, B'C' = 2 = AB'.$

Quadrilateral $ABMC'$ is inscribed.

See Also

2022 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png