Difference between revisions of "2017 AMC 8 Problems/Problem 22"
Dynonychus (talk | contribs) m (→Solution 5 (Pythagorean Theorem)) |
Bobzzz2011 (talk | contribs) (→Solution 3) |
||
Line 35: | Line 35: | ||
==Solution 3== | ==Solution 3== | ||
− | Let the tangency point on <math>AB</math> be <math>D</math>. Note <cmath>AD = AB-BD = AB-BC = 8</cmath> By Power of a Point, <cmath>12(12-2r) = 8^2</cmath> | + | Let the tangency point on <math>AB</math> be <math>D</math>. Note <cmath>AD = AB-BD = AB-BC = 8.</cmath> By Power of a Point, <cmath>12(12-2r) = 8^2.</cmath> |
Solving for <math>r</math> gives | Solving for <math>r</math> gives | ||
− | <cmath>r = \boxed{\textbf{(D) }\frac{10}{3}}</cmath> | + | <cmath>r = \boxed{\textbf{(D) }\frac{10}{3}}.</cmath> |
==Solution 4== | ==Solution 4== |
Revision as of 00:39, 22 November 2022
Contents
Problem
In the right triangle , , , and angle is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle?
Solution 1
We can reflect triangle over line This forms the triangle and a circle out of the semicircle. Let us call the center of the circle We can see that Circle is the incircle of We can use a formula for finding the radius of the incircle. The area of a triangle . The area of is The semiperimeter is Simplifying Our answer is therefore
Asymptote diagram by Mathandski
Solution 2
Let the center of the semicircle be . Let the point of tangency between line and the semicircle be . Angle is common to triangles and . By tangent properties, angle must be degrees. Since both triangles and are right and share an angle, is similar to . The hypotenuse of is , where is the radius of the circle. (See for yourself) The short leg of is . Because ~ , we have and solving gives
Solution 3
Let the tangency point on be . Note By Power of a Point, Solving for gives
Solution 4
Let us label the center of the semicircle and the point where the circle is tangent to the triangle . The area of = the areas of + , which means . So it gives us .----LarryFlora
Solution 5 (Pythagorean Theorem)
We can draw another radius from the center to the point of tangency. This angle, , is . Label the center , the point of tangency , and the radius .
Since is a kite, then . Also, . By the Pythagorean Theorem, . Solving, .
~MrThinker
Video Solution
https://youtu.be/3VjySNobXLI - Happytwin
https://youtu.be/KtmLUlCpj-I - savannahsolver
https://youtu.be/FDgcLW4frg8?t=3837 - pi_is_3.14
Vertical videos for mobile phones:
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.