Difference between revisions of "1995 AJHSME Problems/Problem 6"

Line 14: Line 14:
 
<math>\text{(A)}\ 9 \qquad \text{(B)}\ 18 \qquad \text{(C)}\ 36 \qquad \text{(D)}\ 72 \qquad \text{(D)}\ 81</math>
 
<math>\text{(A)}\ 9 \qquad \text{(B)}\ 18 \qquad \text{(C)}\ 36 \qquad \text{(D)}\ 72 \qquad \text{(D)}\ 81</math>
  
==Solution==
+
==Solution 1==
  
 
Since the perimeter of <math>I</math> <math>12</math>, each side is <math>\frac{12}{4} = 3</math>.   
 
Since the perimeter of <math>I</math> <math>12</math>, each side is <math>\frac{12}{4} = 3</math>.   
Line 23: Line 23:
  
 
Since <math>III</math> is also a square, it has an perimeter of <math>9\cdot 4 = 36</math>, and the answer is <math>\boxed{C}</math>.
 
Since <math>III</math> is also a square, it has an perimeter of <math>9\cdot 4 = 36</math>, and the answer is <math>\boxed{C}</math>.
 +
 +
==Solution 2==
 +
Let a side of <math>I</math> equal <math>x</math>, and let a side of <math>II</math> equal <math>y</math>. The perimeter of <math>I</math> is <math>4x</math>, and the perimeter of <math>II</math> is <math>4y</math>. One side of <math>III</math> has length <math>x+y</math>, so the perimeter is <math>4x+4y</math>, which just so happens to be the sum of the perimeters of <math>I</math> and <math>II</math>, giving us <math>12+24=36</math>, or answer <math>\boxed{C}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 10:37, 27 June 2023

Problem

Figures $I$, $II$, and $III$ are squares. The perimeter of $I$ is $12$ and the perimeter of $II$ is $24$. The perimeter of $III$ is

[asy] draw((0,0)--(15,0)--(15,6)--(12,6)--(12,9)--(0,9)--cycle); draw((9,0)--(9,9)); draw((9,6)--(12,6)); label("$III$",(4.5,4),N); label("$II$",(12,2.5),N); label("$I$",(10.5,6.75),N); [/asy]

$\text{(A)}\ 9 \qquad \text{(B)}\ 18 \qquad \text{(C)}\ 36 \qquad \text{(D)}\ 72 \qquad \text{(D)}\ 81$

Solution 1

Since the perimeter of $I$ $12$, each side is $\frac{12}{4} = 3$.

Since the perimeter of $II$ is $24$, each side is $\frac{24}{4} = 6$.

The side of $III$ is equal to the sum of the sides of $I$ and $II$. Therefore, the side of $III$ is $3 + 6 = 9$.

Since $III$ is also a square, it has an perimeter of $9\cdot 4 = 36$, and the answer is $\boxed{C}$.

Solution 2

Let a side of $I$ equal $x$, and let a side of $II$ equal $y$. The perimeter of $I$ is $4x$, and the perimeter of $II$ is $4y$. One side of $III$ has length $x+y$, so the perimeter is $4x+4y$, which just so happens to be the sum of the perimeters of $I$ and $II$, giving us $12+24=36$, or answer $\boxed{C}$.

See Also

1995 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png