Difference between revisions of "1991 AIME Problems/Problem 14"
(→Solution) |
|||
Line 2: | Line 2: | ||
A [[hexagon]] is inscribed in a [[circle]]. Five of the sides have length <math>81</math> and the sixth, denoted by <math>\overline{AB}</math>, has length <math>31</math>. Find the sum of the lengths of the three diagonals that can be drawn from <math>A_{}^{}</math>. | A [[hexagon]] is inscribed in a [[circle]]. Five of the sides have length <math>81</math> and the sixth, denoted by <math>\overline{AB}</math>, has length <math>31</math>. Find the sum of the lengths of the three diagonals that can be drawn from <math>A_{}^{}</math>. | ||
− | [[Image: | + | == Solution == |
+ | <center>[[Image:AIME_1991_Solution_14.png]]</center> | ||
− | == | + | Let <math>x=AC=BF</math>, <math>y=AD=BE</math>, and <math>z=AE=BD</math>. |
− | |||
− | |||
[[Ptolemy's Theorem]] on <math>ABCD</math> gives <math>81y+31\cdot 81=xz</math>, and Ptolemy on <math>ACDE</math> gives <math>x\cdot z+81^2=y^2</math>. | [[Ptolemy's Theorem]] on <math>ABCD</math> gives <math>81y+31\cdot 81=xz</math>, and Ptolemy on <math>ACDE</math> gives <math>x\cdot z+81^2=y^2</math>. | ||
Subtracting these equations give <math>y^2-81y-112\cdot 81=0</math>, and from this <math>y=144</math>. Ptolemy on <math>ADEF</math> gives <math>81y+81^2=z^2</math>, and from this <math>z=135</math>. Finally, plugging back into the first equation gives <math>x=105</math>, so <math>x+y+z=105+144+135=384</math>. | Subtracting these equations give <math>y^2-81y-112\cdot 81=0</math>, and from this <math>y=144</math>. Ptolemy on <math>ADEF</math> gives <math>81y+81^2=z^2</math>, and from this <math>z=135</math>. Finally, plugging back into the first equation gives <math>x=105</math>, so <math>x+y+z=105+144+135=384</math>. |
Revision as of 19:15, 16 November 2007
Problem
A hexagon is inscribed in a circle. Five of the sides have length and the sixth, denoted by
, has length
. Find the sum of the lengths of the three diagonals that can be drawn from
.
Solution

Let ,
, and
.
Ptolemy's Theorem on gives
, and Ptolemy on
gives
.
Subtracting these equations give
, and from this
. Ptolemy on
gives
, and from this
. Finally, plugging back into the first equation gives
, so
.
See also
1991 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |