Difference between revisions of "1981 AHSME Problems/Problem 25"
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
In <math>\triangle ABC</math> in the adjoining figure, <math>AD</math> and <math>AE</math> trisect <math>\angle BAC</math>. The lengths of <math>BD</math>, <math>DE</math> and <math>EC</math> are <math>2</math>, <math>3</math>, and <math>6</math>, respectively. The length of the shortest side of <math>\triangle ABC</math> is | In <math>\triangle ABC</math> in the adjoining figure, <math>AD</math> and <math>AE</math> trisect <math>\angle BAC</math>. The lengths of <math>BD</math>, <math>DE</math> and <math>EC</math> are <math>2</math>, <math>3</math>, and <math>6</math>, respectively. The length of the shortest side of <math>\triangle ABC</math> is | ||
Line 38: | Line 38: | ||
Therefore, <math>5b^2=27c^2</math>, so <math>b^2=\frac{27c^2}5</math>, thus our first equation from earlier gives <math>264=\frac{33c^2}{5}</math>, so <math>c^2=40</math>, thus <math>b^2=216</math>. So, <math>c<b</math> and the answer to the original problem is <math>c=\sqrt{40}=\boxed{2\sqrt{10}~\textbf{(A)}}</math>. | Therefore, <math>5b^2=27c^2</math>, so <math>b^2=\frac{27c^2}5</math>, thus our first equation from earlier gives <math>264=\frac{33c^2}{5}</math>, so <math>c^2=40</math>, thus <math>b^2=216</math>. So, <math>c<b</math> and the answer to the original problem is <math>c=\sqrt{40}=\boxed{2\sqrt{10}~\textbf{(A)}}</math>. | ||
− | [[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]] | + | ~ [[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]] |
{{AHSME box|year=1981|num-b=24|num-a=26}} | {{AHSME box|year=1981|num-b=24|num-a=26}} |
Revision as of 20:00, 9 August 2023
Problem
In in the adjoining figure, and trisect . The lengths of , and are , , and , respectively. The length of the shortest side of is
Solution
Let , , , and . Then, by the Angle Bisector Theorem, and , thus and .
Also, by Stewart’s Theorem, and . Therefore, we have the following system of equations using our substitution from earlier:
Thus, we have:
Therefore, , so , thus our first equation from earlier gives , so , thus . So, and the answer to the original problem is .
1981 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Problem 26 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |