Difference between revisions of "2023 AMC 10A Problems/Problem 5"
Boppitybop (talk | contribs) m (→Solution 1) |
(→Solution 1) |
||
Line 5: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
− | Prime factorization of this gives us <math>2^{15}\cdot3^{5}\cdot5^{15}</math> Pairing <math>2^{15}</math> and <math>5^{15}</math> gives us a number with <math>15</math> zeros, | + | Prime factorization of this gives us <math>2^{15}\cdot3^{5}\cdot5^{15}</math>. Pairing <math>2^{15}</math> and <math>5^{15}</math> together gives us a number with <math>15</math> zeros, or 15 digits. <math>3^5=243</math> and this adds an extra 3 digits. <math>15+3=\boxed{\textbf{(E) 18}}</math> |
~zhenghua | ~zhenghua |
Revision as of 20:52, 9 November 2023
Problem
How many digits are in the base-ten representation of ?
Solution 1
Prime factorization of this gives us . Pairing and together gives us a number with zeros, or 15 digits. and this adds an extra 3 digits.
~zhenghua
See Also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.