Difference between revisions of "2012 AMC 8 Problems/Problem 19"
m |
(Deleted Solution 4 since it was a duplicate of Solution 3.) |
||
Line 13: | Line 13: | ||
− | We can do trial and error. Let's make blue <math>5</math>. That makes green <math>1</math> and red <math>3</math> because <math>6-5=1</math> and <math>8-5=3</math>. To check this let's plug <math>1</math> and <math>3</math> into <math>r+g=4</math> | + | We can do trial and error. Let's make blue <math>5</math>. That makes green <math>1</math> and red <math>3</math> because <math>6-5=1</math> and <math>8-5=3</math>. To check this, let's plug <math>1</math> and <math>3</math> into <math>r+g=4</math>, which works. Now count the number of marbles - <math>5+3+1=9</math>. So the answer is <math>\boxed{\textbf{(C)}\ 9}.</math> |
==Solution 2== | ==Solution 2== | ||
Line 19: | Line 19: | ||
We already knew the facts: <math>6</math> are blue and green, meaning <math>b+g=6</math>; <math>8</math> are red and blue, meaning <math>r+b=8</math>; <math>4</math> are red and green, meaning <math>r+g=4</math>. Then we need to add these three equations: <math>b+g+r+b+r+g=2(r+g+b)=6+8+4=18</math>. It gives us all of the marbles are <math>r+g+b = 18/2 = 9</math>. So the answer is <math>\boxed{\textbf{(C)}\ 9}</math>. ---LarryFlora | We already knew the facts: <math>6</math> are blue and green, meaning <math>b+g=6</math>; <math>8</math> are red and blue, meaning <math>r+b=8</math>; <math>4</math> are red and green, meaning <math>r+g=4</math>. Then we need to add these three equations: <math>b+g+r+b+r+g=2(r+g+b)=6+8+4=18</math>. It gives us all of the marbles are <math>r+g+b = 18/2 = 9</math>. So the answer is <math>\boxed{\textbf{(C)}\ 9}</math>. ---LarryFlora | ||
− | ==Solution 3 Venn Diagrams== | + | ==Solution 3 (Venn Diagrams)== |
We may draw three Venn diagrams to represent these three cases, respectively. | We may draw three Venn diagrams to represent these three cases, respectively. | ||
[[File: Screen_Shot_2021-08-29_at_9.14.51_AM.png]] | [[File: Screen_Shot_2021-08-29_at_9.14.51_AM.png]] | ||
− | Let the amount of all the marbles | + | Let the amount of all the marbles be <math>x</math>, meaning <math>R+G+B = x</math>. |
The Venn diagrams give us the equation: <math>x = (x-6)+(x-8)+(x-4)</math>. | The Venn diagrams give us the equation: <math>x = (x-6)+(x-8)+(x-4)</math>. | ||
Line 30: | Line 30: | ||
Thus, the answer is <math>\boxed{\textbf{(C)}\ 9}</math>. ---LarryFlora | Thus, the answer is <math>\boxed{\textbf{(C)}\ 9}</math>. ---LarryFlora | ||
− | ==Solution 4 | + | ==Solution 4 (Answer Choices)== |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Since we know all but <math>8</math> marbles in the jar are green, the jar must have at least <math>9</math> marbles. Then we can just start from <math>C</math> and keep going. If there are <math>9</math> marbles total, there are <math>3</math> red marbles <math>(9-6)</math>, <math>1</math> green marble <math>(9-8)</math>, and <math>5</math> blue marbles <math>(9-4)</math>. Since we assumed there were <math>9</math> marbles and <math>3+1+5=9</math>, the answer is <math>\boxed{\textbf{(C)}\ 9}</math>. | Since we know all but <math>8</math> marbles in the jar are green, the jar must have at least <math>9</math> marbles. Then we can just start from <math>C</math> and keep going. If there are <math>9</math> marbles total, there are <math>3</math> red marbles <math>(9-6)</math>, <math>1</math> green marble <math>(9-8)</math>, and <math>5</math> blue marbles <math>(9-4)</math>. Since we assumed there were <math>9</math> marbles and <math>3+1+5=9</math>, the answer is <math>\boxed{\textbf{(C)}\ 9}</math>. | ||
− | ==Solution | + | ==Solution 5 (Algebra) == |
Let <math>x</math> be the number of total marbles. There are <math>x – 6</math> red marbles, <math>x – 8</math> green marbles, and <math>x – 4</math> blue marbles. | Let <math>x</math> be the number of total marbles. There are <math>x – 6</math> red marbles, <math>x – 8</math> green marbles, and <math>x – 4</math> blue marbles. | ||
We can create an equation: <math>(x – 6)+(x – 8)+(x – 4)=x</math> | We can create an equation: <math>(x – 6)+(x – 8)+(x – 4)=x</math> |
Revision as of 13:45, 29 December 2023
Contents
Problem
In a jar of red, green, and blue marbles, all but 6 are red marbles, all but 8 are green, and all but 4 are blue. How many marbles are in the jar?
Solution 1
are blue and green -
are red and blue -
are red and green-
We can do trial and error. Let's make blue . That makes green and red because and . To check this, let's plug and into , which works. Now count the number of marbles - . So the answer is
Solution 2
We already knew the facts: are blue and green, meaning ; are red and blue, meaning ; are red and green, meaning . Then we need to add these three equations: . It gives us all of the marbles are . So the answer is . ---LarryFlora
Solution 3 (Venn Diagrams)
We may draw three Venn diagrams to represent these three cases, respectively.
Let the amount of all the marbles be , meaning .
The Venn diagrams give us the equation: . So , . Thus, the answer is . ---LarryFlora
Solution 4 (Answer Choices)
Since we know all but marbles in the jar are green, the jar must have at least marbles. Then we can just start from and keep going. If there are marbles total, there are red marbles , green marble , and blue marbles . Since we assumed there were marbles and , the answer is .
Solution 5 (Algebra)
Let be the number of total marbles. There are red marbles, green marbles, and blue marbles. We can create an equation: Solving, we get , which means the total number of marbles is . -J.L.L (Feel free to edit)
Video Solution
https://youtu.be/mMph7QH1kX0 Soo, DRMS, NM
https://youtu.be/-p5qv7DftrU ~savannahsolver
Video Solution by OmegaLearn
https://youtu.be/TkZvMa30Juo?t=1316
~pi_is_3.14
See Also
2012 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.