Difference between revisions of "2002 AMC 10P Problems"

(Problem 9)
(Problem 8)
Line 113: Line 113:
  
 
How many ordered triples of positive integers <math>(x,y,z)</math> satisfy <math>(x^y)^z=64?</math>
 
How many ordered triples of positive integers <math>(x,y,z)</math> satisfy <math>(x^y)^z=64?</math>
 +
 
<math>
 
<math>
 
\text{(A) }5
 
\text{(A) }5

Revision as of 01:03, 14 July 2024

2002 AMC 10P (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

The ratio $\frac{(2^4)^8}{(4^8)^2}$ equals

$\text{(A) }\frac{1}{4} \qquad \text{(B) }\frac{1}{2} \qquad \text{(C) }1 \qquad \text{(D) }2 \qquad \text{(E) }8$

Solution

Problem 2

The sum of eleven consecutive integers is $2002.$ What is the smallest of these integers?

$\text{(A) }175 \qquad \text{(B) }177 \qquad \text{(C) }179 \qquad \text{(D) }180 \qquad \text{(E) }181$

Solution

Problem 3

Mary typed a six-digit number, but the two $1$s she typed didn't show. What appeared was $2002.$ How many different six-digit numbers could she have typed?

$\text{(A) }4 \qquad \text{(B) }8 \qquad \text{(C) }10 \qquad \text{(D) }15 \qquad \text{(E) }20$

Solution

Problem 4

Which of the following numbers is a perfect square?

$\text{(A) }4^4 5^5 6^6 \qquad \text{(B) }4^4 5^6 6^5 \qquad \text{(C) }4^5 5^4 6^6 \qquad \text{(D) }4^6 5^4 6^5 \qquad \text{(E) }4^6 5^5 6^4$

Solution

Problem 5

Let $(a_n)_{n \geq 1}$ be a sequence such that $a_1 = 1$ and $3a_{n+1} - 3a_n = 1$ for all $n \geq 1.$ Find $a_{2002}.$

a positive integer?

$\text{(A) }666 \qquad \text{(B) }667 \qquad \text{(C) }668 \qquad \text{(D) }669 \qquad \text{(E) }670$

Solution

Problem 6

The perimeter of a rectangle $100$ and its diagonal has length $x.$ What is the area of this rectangle? $\text{(A) }625-x^2 \qquad \text{(B) }625-\frac{x^2}{2} \qquad \text{(C) }1250-x^2 \qquad \text{(D) }1250-\frac{x^2}{2} \qquad \text{(E) }2500-\frac{x^2}{2}$

Solution

Problem 7

The dimensions of a rectangular box in inches are all positive integers and the volume of the box is $2002$ in$^3$. Find the minimum possible sum of the three dimensions.

$\text{(A) }36 \qquad \text{(B) }38  \qquad \text{(C) }42 \qquad \text{(D) }44 \qquad \text{(E) }92$

Solution

Problem 8

How many ordered triples of positive integers $(x,y,z)$ satisfy $(x^y)^z=64?$

$\text{(A) }5 \qquad \text{(B) }6 \qquad \text{(C) }7 \qquad \text{(D) }8 \qquad \text{(E) }9$

Solution

Problem 9

The function $f$ is given by the table

\[\begin{tabular}{|c||c|c|c|c|c|}  \hline   x & 1 & 2 & 3 & 4 & 5 \\   \hline  f(x) & 4 & 1 & 3 & 5 & 2 \\  \hline \end{tabular}\]

If $u_0=4$ and $u_{n+1} = f(u_n)$ for $n \ge 0$, find $u_{2002}$

$\text{(A) }1 \qquad \text{(B) }2 \qquad \text{(C) }3 \qquad \text{(D) }4 \qquad \text{(E) }5$

Solution

Problem 10

Let $f_n (x) = \text{sin}^n x + \text{cos}^n x.$ For how many $x$ in $[0,\pi]$ is it true that

\[6f_{4}(x)-4f_{6}(x)=2f_{2}(x)?\]

$\text{(A) }2 \qquad \text{(B) }4  \qquad \text{(C) }6 \qquad \text{(D) }8 \qquad \text{(E) more than }8$

Solution

Problem 11

Let $t_n = \frac{n(n+1)}{2}$ be the $n$th triangular number. Find

\[\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_{2002}}\]

$\text{(A) }\frac {4003}{2003} \qquad \text{(B) }\frac {2001}{1001} \qquad \text{(C) }\frac {4004}{2003} \qquad \text{(D) }\frac {4001}{2001} \qquad \text{(E) }2$

Solution

Problem 12

For how many positive integers $n$ is $n^3 - 8n^2 + 20n - 13$ a prime number?

$\text{(A) one} \qquad \text{(B) two} \qquad \text{(C) three} \qquad \text{(D) four} \qquad \text{(E) more than four}$

Solution

Problem 13

What is the maximum value of $n$ for which there is a set of distinct positive integers $k_1, k_2, ... k_n$ for which

\[k^2_1 + k^2_2 + ... + k^2_n = 2002?\]

$\text{(A) }14 \qquad \text{(B) }15 \qquad \text{(C) }16 \qquad \text{(D) }17 \qquad \text{(E) }18$

Solution

Problem 14

Find $i + 2i^2 +3i^3 + . . . + 2002i^{2002}.$

$\text{(A) }-999 + 1002i \qquad \text{(B) }-1002 + 999i \qquad \text{(C) }-1001 + 1000i \qquad \text{(D) }-1002 + 1001i \qquad \text{(E) }i$

Solution

Problem 15

There are $1001$ red marbles and $1001$ black marbles in a box. Let $P_s$ be the probability that two marbles drawn at random from the box are the same color, and let $P_d$ be the probability that they are different colors. Find $|P_s-P_d|.$

$\text{(A) }0 \qquad \text{(B) }\frac{1}{2002} \qquad \text{(C) }\frac{1}{2001} \qquad \text{(D) }\frac {2}{2001} \qquad \text{(E) }\frac{1}{1000}$

Solution

Problem 16

The altitudes of a triangle are $12, 15,$ and $20.$ The largest angle in this triangle is

$\text{(A) }72^\circ \qquad \text{(B) }75^\circ \qquad \text{(C) }90^\circ \qquad \text{(D) }108^\circ \qquad \text{(E) }120^\circ$

Solution

Problem 17

Let $f(x) = \sqrt{\sin^4{x} + 4 \cos^2{x}} - \sqrt{\cos^4{x} + 4 \sin^2{x}}.$ An equivalent form of $f(x)$ is

$\text{(A) }1-\sqrt{2}\sin{x} \qquad \text{(B) }-1+\sqrt{2}\cos{x} \qquad \text{(C) }\cos{\frac{x}{2}} - \sin{\frac{x}{2}} \qquad \text{(D) }\cos{x} - \sin{x} \qquad \text{(E) }\cos{2x}$

Solution

Problem 18

If $a,b,c$ are real numbers such that $a^2 + 2b =7$, $b^2 + 4c= -7,$ and $c^2 + 6a= -14$, find $a^2 + b^2 + c^2.$

$\text{(A) }14 \qquad \text{(B) }21 \qquad \text{(C) }28 \qquad \text{(D) }35 \qquad \text{(E) }49$

Solution

Problem 19

In quadrilateral $ABCD$, $m\angle B = m \angle C = 120^{\circ}, AB=3, BC=4,$ and $CD=5.$ Find the area of $ABCD.$

$\text{(A) }15 \qquad \text{(B) }9 \sqrt{3} \qquad \text{(C) }\frac{45 \sqrt{3}}{4} \qquad \text{(D) }\frac{47 \sqrt{3}}{4} \qquad \text{(E) }15 \sqrt{3}$

Solution

Problem 20

Let $f$ be a real-valued function such that

\[f(x) + 2f(\frac{2002}{x}) = 3x\]

for all $x>0.$ Find $f(2).$

$\text{(A) }1000 \qquad \text{(B) }2000 \qquad \text{(C) }3000 \qquad \text{(D) }4000 \qquad \text{(E) }6000$

Solution

Problem 21

Let $a$ and $b$ be real numbers greater than $1$ for which there exists a positive real number $c,$ different from $1$, such that

\[2(\log_a{c} + \log_b{c}) = 9\log_{ab}{c}.\]

Find the largest possible value of $\log_a b.$

$\text{(A) }\sqrt{2} \qquad \text{(B) }\sqrt{3} \qquad \text{(C) }2 \qquad \text{(D) }\sqrt{6} \qquad \text{(E) }3$

Solution

Problem 22

Under the new AMC $10, 12$ scoring method, $6$ poitns are given for each correct answer, $2.5$ points are given for each unanswered question, and no points are given for an incorrect answer. Some of the possible scores between $0$ and $150$ can be obtained in only one way, for example, the only way to obtain a score of $146.5$ is to have $24$ correct answers and one unanswered question. Some scores can be obtained in exactly two ways, for example, a score of $104.5$ can be obtained with $17$ correct answers, $1$ unanswered question, and $7$ incorrect, and also with $12$ correct answers and $13$ unanswered questions. There are (three) scores that can be obtained in exactly three ways. What is their sum?


$\text{(A) }175 \qquad \text{(B) }179.5 \qquad \text{(C) }182 \qquad \text{(D) }188.5 \qquad \text{(E) }201$

Solution

Problem 23

The equation $z(z+i)(z+3i)=2002i$ has a zero of the form $a+bi$, where $a$ and $b$ are positive real numbers. Find $a.$

$\text{(A) }\sqrt{118} \qquad \text{(B) }\sqrt{210} \qquad \text{(C) }2 \sqrt{210} \qquad \text{(D) }\sqrt{2002} \qquad \text{(E) }100 \sqrt{2}$

Solution

Problem 24

Let $ABCD$ be a regular tetrahedron and Let $E$ be a point inside the face $ABC.$ Denote by $s$ the sum of the distances from $E$ to the faces $DAB, DBC, DCA,$ and by $S$ the sum of the distances from $E$ to the edges $AB, BC, CA.$ Then $\frac{s}{S}$ equals

$\text{(A) }\sqrt{2} \qquad \text{(B) }\frac{2 \sqrt{2}}{3} \qquad \text{(C) }\frac{\sqrt{6}}{2} \qquad \text{(D) }2 \qquad \text{(E) }3$

Solution

Problem 25

Let $a$ and $b$ be real numbers such that $\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}$ and $\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.$ Find $\sin{(a+b)}.$

$\text{(A) }\frac{1}{2} \qquad \text{(B) }\frac{\sqrt{2}}{2} \qquad \text{(C) }\frac{\sqrt{3}}{2} \qquad \text{(D) }\frac{\sqrt{6}}{2} \qquad \text{(E) }1$

Solution

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
2001 AMC 10 Problems
Followed by
2002 AMC 10A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png