Difference between revisions of "2017 AMC 8 Problems/Problem 22"
(→Solution 1) |
(→Solution 3) |
||
Line 16: | Line 16: | ||
==Solution 2== | ==Solution 2== | ||
Let the center of the semicircle be <math>O</math>. Let the point of tangency between line <math>AB</math> and the semicircle be <math>F</math>. Angle <math>BAC</math> is common to triangles <math>ABC</math> and <math>AFO</math>. By tangent properties, angle <math>AFO</math> must be <math>90</math> degrees. Since both triangles <math>ABC</math> and <math>AFO</math> are right and share an angle, <math>AFO</math> is similar to <math>ABC</math>. The hypotenuse of <math>AFO</math> is <math>12 - r</math>, where <math>r</math> is the radius of the circle. (See for yourself) The short leg of <math>AFO</math> is <math>r</math>. Because <math>\triangle AFO</math> ~ <math>\triangle ABC</math>, we have <math>r/(12 - r) = 5/13</math> and solving gives <math>r = \boxed{\textbf{(D)}\ \frac{10}{3}}.</math> | Let the center of the semicircle be <math>O</math>. Let the point of tangency between line <math>AB</math> and the semicircle be <math>F</math>. Angle <math>BAC</math> is common to triangles <math>ABC</math> and <math>AFO</math>. By tangent properties, angle <math>AFO</math> must be <math>90</math> degrees. Since both triangles <math>ABC</math> and <math>AFO</math> are right and share an angle, <math>AFO</math> is similar to <math>ABC</math>. The hypotenuse of <math>AFO</math> is <math>12 - r</math>, where <math>r</math> is the radius of the circle. (See for yourself) The short leg of <math>AFO</math> is <math>r</math>. Because <math>\triangle AFO</math> ~ <math>\triangle ABC</math>, we have <math>r/(12 - r) = 5/13</math> and solving gives <math>r = \boxed{\textbf{(D)}\ \frac{10}{3}}.</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 4== | ==Solution 4== |
Revision as of 09:47, 24 July 2024
Contents
Problem
In the right triangle , , , and angle is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle?
Solution 2
Let the center of the semicircle be . Let the point of tangency between line and the semicircle be . Angle is common to triangles and . By tangent properties, angle must be degrees. Since both triangles and are right and share an angle, is similar to . The hypotenuse of is , where is the radius of the circle. (See for yourself) The short leg of is . Because ~ , we have and solving gives
Solution 4
Let us label the center of the semicircle and the point where the circle is tangent to the triangle . The area of = the areas of + , which means . So, it gives us .
--LarryFlora
Solution 5 (Pythagorean Theorem)
We can draw another radius from the center to the point of tangency. This angle, , is . Label the center , the point of tangency , and the radius .
Since is a kite, then . Also, . By the Pythagorean Theorem, . Solving, .
~MrThinker
Solution 6 (Basic Trigonometry)
We can draw another radius from the center to the point of tangency. Label the center , the point of tangency , and the radius .
Since is a kite, , and due to the Pythagorean Theorem. Angle is , so we can use the famous mnemonic SOH CAH TOA.
~PowerQualimit
Video Solution (CREATIVE THINKING + ANALYSIS!!!)
~Education, the Study of Everything
Video Solution by OmegaLearn
https://youtu.be/FDgcLW4frg8?t=3837
- pi_is_3.14
Video Solutions
- Happytwin
- savannahsolver
Vertical videos for mobile phones:
See Also
2017 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.