Difference between revisions of "2011 AMC 12A Problems/Problem 8"

Line 65: Line 65:
 
<math>A+B+C=30</math> because the period is <math>3</math>.
 
<math>A+B+C=30</math> because the period is <math>3</math>.
 
Since <math>C=5</math> <cmath>A+B=25</cmath>
 
Since <math>C=5</math> <cmath>A+B=25</cmath>
Since <math>B=H</math> <math></math>A+H=\fbox{(C) 25}$
+
Since <math>B=H</math> <cmath>A+H=\fbox{(C) 25}</cmath>
 
==Note==
 
==Note==
 
Something useful to shorten a lot of the solutions above is to notice <cmath>5 + D + E = D + E + F</cmath> so F = 5
 
Something useful to shorten a lot of the solutions above is to notice <cmath>5 + D + E = D + E + F</cmath> so F = 5

Revision as of 11:52, 22 September 2024

Problem

In the eight term sequence $A$, $B$, $C$, $D$, $E$, $F$, $G$, $H$, the value of $C$ is $5$ and the sum of any three consecutive terms is $30$. What is $A+H$?

$\textbf{(A)}\ 17 \qquad \textbf{(B)}\ 18 \qquad \textbf{(C)}\ 25 \qquad \textbf{(D)}\ 26 \qquad \textbf{(E)}\ 43$

Solution 1

Let $A=x$. Then from $A+B+C=30$, we find that $B=25-x$. From $B+C+D=30$, we then get that $D=x$. Continuing this pattern, we find $E=25-x$, $F=5$, $G=x$, and finally $H=25-x$. So $A+H=x+25-x=25 \rightarrow \boxed{\textbf{C}}$


Solution 2

Given that the sum of 3 consecutive terms is 30, we have $(A+B+C)+(C+D+E)+(F+G+H)=90$ and $(B+C+D)+(E+F+G)=60$

It follows that $A+B+C+D+E+F+G+H=85$ because $C=5$.

Subtracting, we have that $A+H=25\rightarrow \boxed{\textbf{C}}$.


Solution 3 (the tedious one)

From the given information, we can deduce the following equations:

$A+B=25, B+D=25, D+E=25, D+E+F=30, E+F+G =30$, and $F+G+H=30$.

We can then cleverly manipulate the equations above by adding and subtracting them to be left with the answer.

$(A+B)-(B+D)=25-25 \implies (A-D)=0$

$(A-D)+(D+E)=0+25 \implies (A+E)=25$

$(A+E)-(E+F+G)=25-30 \implies (A-F-G)=-5$ (Notice how we don't use $D+E+F=30$)

$(A-F-G)+(F+G+H)=-5+30 \implies (A+H)=25$

Therefore, we have $A+H=25 \rightarrow \boxed{\textbf{C}}$

~JinhoK

Solution 4 (the cheap one)

Since all of the answer choices are constants, it shouldn't matter what we pick $A$ and $B$ to be, so let $A = 20$ and $B = 5$. Then $D = 30 - B -C = 20$, $E = 30 - D - C = 5$, $F = 30 - D - E =5$, and so on until we get $H = 5$. Thus $A + H = \boxed{\mathbf{(C)}25}$

Solution 5 (assumption)

Assume the sequence is \[15,10,5,15,10,5,15,10\].

Thus, $15+10=\boxed{25}$ or option $\boxed{\mathbf{(C )}25}$

~SirAppel

Solution 6

Notice that the period of the sequence is $3$ as given. (If this isn't clear we can show an example: $A+B+C=B+C=D$ $\Leftrightarrow$ $A=D$). Then $A=D$ and $H=B$, so $A+H=D+B=D+B+C-C=30-5=\boxed{\textbf{(C)}\;25}$.

~eevee9406

Solution 7

Since the period of the sequence is $3$ \[A=D=G, B=E=H, C=F\] $A+B+C=30$ because the period is $3$. Since $C=5$ \[A+B=25\] Since $B=H$ \[A+H=\fbox{(C) 25}\]

Note

Something useful to shorten a lot of the solutions above is to notice \[5 + D + E = D + E + F\] so F = 5

Video Solution

https://www.youtube.com/watch?v=6tlqpAcmbz4 ~Shreyas S

Podcast Solution

https://www.buzzsprout.com/56982/episodes/383730 (Episode starts with a solution to this question) —wescarroll

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png