Difference between revisions of "2004 AMC 12B Problems/Problem 19"
(problem/solution/images) |
m (→Solution: <asy> fix) |
||
Line 12: | Line 12: | ||
<center><asy> | <center><asy> | ||
import olympiad; | import olympiad; | ||
− | size( | + | size(220); |
defaultpen(0.7); | defaultpen(0.7); | ||
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2; | pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2; | ||
Line 31: | Line 31: | ||
<center><asy> | <center><asy> | ||
import olympiad; | import olympiad; | ||
− | size( | + | size(450); |
defaultpen(0.7); | defaultpen(0.7); | ||
pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0); | pair A = (0,0), B = (36,0), C = (20,12), D = (16,12), E=(A+B)/2, F=(20+1.6,12-1.2), G = (C+D)/2, H=(16,0); | ||
− | pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2; | + | pair P=(D+G)/2, Q=(D+H)/2, R=(B+E)/2, T=(A+H)/2, O=(E+G)/2; |
draw(A--B--C--D--cycle); | draw(A--B--C--D--cycle); | ||
draw(G--E--H--D); | draw(G--E--H--D); | ||
draw(circumcircle(E,F,G)); | draw(circumcircle(E,F,G)); | ||
− | dot(E); | + | dot(E);dot(F);dot(G);dot(H);dot(O); |
− | dot(F); | ||
− | dot(G); | ||
− | dot(H); | ||
label("\(A\)",A,S); | label("\(A\)",A,S); | ||
label("\(B\)",B,S); | label("\(B\)",B,S); | ||
Line 50: | Line 47: | ||
label("\(G\)",G,N); | label("\(G\)",G,N); | ||
label("\(H\)",H,S); | label("\(H\)",H,S); | ||
− | label("\(O\)", | + | label("\(O\)",O,NE); |
label("\(2\)",P,N); | label("\(2\)",P,N); | ||
label("\(12\)",Q,W); | label("\(12\)",Q,W); | ||
Line 56: | Line 53: | ||
label("\(16\)",T,S); | label("\(16\)",T,S); | ||
label("\(20\)",(A+D)/2,NW); | label("\(20\)",(A+D)/2,NW); | ||
+ | label("\(r\)",(O+E)/2,SE); | ||
</asy></center> | </asy></center> | ||
Revision as of 10:49, 10 February 2008
Problem
A truncated cone has horizontal bases with radii and . A sphere is tangent to the top, bottom, and lateral surface of the truncated cone. What is the radius of the sphere?
Solution
Consider a trapezoidal (label it as follows) cross-section of the truncate cone along a diameter of the bases:
Above, and are points of tangency. By the Two Tangent Theorem, and , so . We draw such that it is the foot of the altitude to :
By the Pythagorean Theorem,
See also
2004 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |