Difference between revisions of "2017 AMC 8 Problems/Problem 22"

(Undo revision 231272 by Megaboy6679 (talk))
(Tag: Undo)
 
Line 39: Line 39:
  
 
~[[User:Bloggish|Bloggish]]
 
~[[User:Bloggish|Bloggish]]
 +
 +
==Solution 3==
 +
Like solution 2, we reflect <math>\triangle ABC</math> over line <math>\overline{AC}</math> and label the reflection of point <math>B</math> as <math>D</math>. As <math>AB = AD = 13</math> by the Pythagorean Theorem, we use the formula <math>rs=A</math>, where <math>r</math> is the inradius (what we're trying to find), <math>s</math> is the semiperimeter (<math>\frac{\overline{AB}+\overline{AD}+\overline{BD}}{2}</math>), and <math>A</math> is the area of the triangle in which the incircle is inscribed in. Substitution gives: <cmath>r=\frac{\frac{10\cdot12}{2}}{\frac{13+13+10}{2}}</cmath>
 +
<cmath>r=\frac{60}{18}</cmath>
 +
<cmath>r=\boxed{\textbf{(D) }\frac{10}{3}}</cmath>
 +
 +
~megaboy6679
  
 
==Video Solution (CREATIVE THINKING + ANALYSIS!!!)==
 
==Video Solution (CREATIVE THINKING + ANALYSIS!!!)==

Latest revision as of 19:40, 2 November 2024

Problem

In the right triangle $ABC$, $AC=12$, $BC=5$, and angle $C$ is a right angle. A semicircle is inscribed in the triangle as shown. What is the radius of the semicircle?

[asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("$A$", (0,0), W); label("$C$", (12,0), E); label("$B$", (12,5), NE); label("$12$", (6, 0), S); label("$5$", (12, 2.5), E);[/asy]

$\textbf{(A) }\frac{7}{6}\qquad\textbf{(B) }\frac{13}{5}\qquad\textbf{(C) }\frac{59}{18}\qquad\textbf{(D) }\frac{10}{3}\qquad\textbf{(E) }\frac{60}{13}$

Solution 1 (Pythagorean Theorem)

We can draw another radius from the center to the point of tangency. This angle, $\angle{ODB}$, is $90^\circ$. Label the center $O$, the point of tangency $D$, and the radius $r$. [asy] draw((0,0)--(12,0)--(12,5)--(0,0)); draw(arc((8.67,0),(12,0),(5.33,0))); label("$A$", (0,0), W); label("$C$", (12,0), E); label("$B$", (12,5), NE); label("$12$", (6, 0), S); label("$5$", (12, 2.5), E); draw((8.665,0)--(7.4,3.07)); label("$O$", (8.665, 0), S); label("$D$", (7.4, 3.1), NW); label("$r$", (11, 0), S); label("$r$", (7.6, 1), W); [/asy]

Since $ODBC$ is a kite, then $DB=CB=5$. Also, $AD=13-5=8$. By the Pythagorean Theorem, $r^2 + 8^2=(12-r)^2$. Solving, $r^2+64=144-24r+r^2 \Rightarrow 24r=80 \Rightarrow \boxed{\textbf{(D) }\frac{10}{3}}$.

~MrThinker

Solution 2 (Basic Trigonometry)

If we reflect triangle $ABC$ over line $AC$, we will get isosceles triangle $ABD$. By the Pythagorean Theorem, we are capable of finding out that the $AB = AD = 13$. Hence, $\tan \frac{\angle BAD}{2} = \tan \angle BAC = \frac{5}{12}$. Therefore, as of triangle $ABD$, the radius of its inscribed circle $r = \frac{tan \frac{\angle BAD}{2}\cdot (AB + AD - BD)}{2} = \frac{\frac{5}{12} \cdot 16}{2} = \boxed{\textbf{(D) }\frac{10}{3}}$

~Bloggish

Solution 3

Like solution 2, we reflect $\triangle ABC$ over line $\overline{AC}$ and label the reflection of point $B$ as $D$. As $AB = AD = 13$ by the Pythagorean Theorem, we use the formula $rs=A$, where $r$ is the inradius (what we're trying to find), $s$ is the semiperimeter ($\frac{\overline{AB}+\overline{AD}+\overline{BD}}{2}$), and $A$ is the area of the triangle in which the incircle is inscribed in. Substitution gives: \[r=\frac{\frac{10\cdot12}{2}}{\frac{13+13+10}{2}}\] \[r=\frac{60}{18}\] \[r=\boxed{\textbf{(D) }\frac{10}{3}}\]

~megaboy6679

Video Solution (CREATIVE THINKING + ANALYSIS!!!)

https://youtu.be/ZOHjUebMNpk

~Education, the Study of Everything

Video Solutions

https://youtu.be/KtmLUlCpj-I

- savannahsolver

See Also

2017 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png