Difference between revisions of "2021 Fall AMC 12B Problems/Problem 25"
Xhypotenuse (talk | contribs) |
(→Solution 3) |
||
Line 157: | Line 157: | ||
~xHypotenuse | ~xHypotenuse | ||
+ | |||
+ | ==Solution 4== | ||
+ | Upon adding one to <math>n</math>, consider each individual remainder. Either it will increase by 1, or it will "wrap around<math>, going from </math>5\rightarrow 0<math> mod 6 and in general, </math>n-1 \rightarrow 0<math> mod n. We will use '</math>+1<math>' to refer to remainders that increase by 1, and 'wrap-arounds' to refer to remainders that go to 0. | ||
+ | |||
+ | |||
+ | Clearly, </math>9<math> </math>+1<math>s isn't possible, since then </math>R(n)\ne R(n+1)<math>. | ||
+ | |||
+ | |||
+ | If there are </math>8<math> </math>+1<math>s and </math>1<math> wrap-arounds, the wrap-around must be equal to </math>-8<math>, which is the case for </math>(9)<math>. However, if </math>n<math> is </math>8<math> mod </math>9<math>, it clearly must also be </math>2<math> mod </math>3<math>, meaning there must more be one wrap-around, and this case won't work. | ||
+ | |||
+ | |||
+ | If there are </math>7<math> </math>+1<math>s and </math>2<math> wrap-arounds, these two wrap-arounds must add to </math>-7<math>. For the possible modulo, we could have </math>(2,7)<math>, </math>(3,6)<math>, and </math>(4,5)<math>. Clearly, </math>(3,6)<math> won't work since if it is </math>5<math> mod </math>6<math>, then it must also be </math>1<math> mod </math>2<math>, meaning </math>(3,6)<math> won't be the only wrap-arounds. Similarly, </math>(4,5)<math> doesn't work since </math>3<math> mod </math>4<math> implies that </math>1<math> mod </math>2<math> will also be a wrap-around. That leaves </math>(2,7)<math>. The number must be </math>1<math> mod </math>2<math> and </math>6<math> mod </math>7<math>, or in other words, </math>-1<math> mod </math>2<math> and </math>-1<math> mod </math>7<math>, meaning n will be </math>-1 \equiv 13<math> mod </math>14<math>. Testing all such two digits numbers that are equivalent to </math>13<math> mod </math>14<math>, we see that </math>13<math> and </math>97<math> are the only two that work. | ||
+ | |||
+ | |||
+ | If there are </math>6<math> </math>+1<math>s and </math>3<math> wrap-arounds, the only possible combination of modulo is </math>(2,3,4)<math>. Thus, </math>n<math> must be </math>11<math> mod </math>12<math>. However, this means that mod </math>6<math> will also be a wrap around, so this case won't work. | ||
+ | |||
+ | |||
+ | Notice that there can be no more cases, as for </math>5<math> </math>+1<math>s, no matter what mods wrap around, the </math>+1<math>s will not be able to balance them out, as it's magnitude is too small. Therefore, there are only </math>\boxed{\textbf{C) }2}$ numbers. | ||
==Video Solution== | ==Video Solution== |
Revision as of 19:30, 4 November 2024
Contents
Problem
For a positive integer, let be the sum of the remainders when is divided by , , , , , , , , and . For example, . How many two-digit positive integers satisfy
Solution 1
Note that we can add to to get , but must subtract for all . Hence, we see that there are four ways to do that because . Note that only is a plausible option, since indicates is divisible by , indicates that is divisible by , indicates is divisible by , and itself indicates divisibility by , too. So, and is not divisible by any positive integers from to , inclusive, except and . We check and get that only and give possible solutions so our answer is .
- kevinmathz
Solution 2
Denote by the remainder of divided by . Define .
Hence,
Hence, this problem asks us to find all , such that .
: .
We have .
Therefore, there is no in this case.
: and .
The condition implies . This further implies . Hence, .
To get , we have .
However, we have .
Therefore, there is no in this case.
: for and .
The condition implies with . Hence, and .
To get , we have .
However, we have .
Therefore, there is no in this case.
: for and .
To get , we have .
Hence, we must have and for .
Therefore, .
: for and .
The condition implies with . Hence, and .
To get , we have .
However, we have .
Therefore, there is no in this case.
: for and .
To get , we have .
This can be achieved if , , .
However, implies . This implies . Hence, . We get a contradiction.
Therefore, there is no in this case.
: for and .
The condition implies with . Hence, .
To get , we have . This implies .
Because and , we have . Hence, . However, in this case, we assume . We get a contradiction.
Therefore, there is no in this case.
: for and .
To get , we have . This is infeasible.
Therefore, there is no in this case.
: for .
To get , we have . This is infeasible.
Therefore, there is no in this case.
Putting all cases together, the answer is .
~Steven Chen (www.professorchenedu.com)
Solution 3
To get from to , would add by for each remainder . However, given that some of these remainders can "round down" to given the nature of mods, we must calculate the possible values of such that the remainders in "rounds down" by a total of , effectively canceling out the adding by initially.
To do so, we will analyze the "rounding down" for each of :
: subtract by
: subtract by
: subtract by , but this also implies mod , so subtract by .
: subtract by
: subtract by , but this also implies mod and , so subtract by : too much
: subtract by
: subtract by , but this also implies mod and , so subtract by : too much
: subtract by , but this also implies mod , so subtract by : too much
: subtract by : too much
Notice that . By testing these sums, we can easily show that the only time when the total subtraction is is when AND . By CRT, :
As in solution 1, then, only and give possible solutions, so our answer is .
~xHypotenuse
Solution 4
Upon adding one to , consider each individual remainder. Either it will increase by 1, or it will "wrap around5\rightarrow 0n-1 \rightarrow 0+1$' to refer to remainders that increase by 1, and 'wrap-arounds' to refer to remainders that go to 0.
Clearly,$ (Error compiling LaTeX. Unknown error_msg)9$$ (Error compiling LaTeX. Unknown error_msg)+1R(n)\ne R(n+1)$.
If there are$ (Error compiling LaTeX. Unknown error_msg)8$$ (Error compiling LaTeX. Unknown error_msg)+11-8(9)n8923$, meaning there must more be one wrap-around, and this case won't work.
If there are$ (Error compiling LaTeX. Unknown error_msg)7$$ (Error compiling LaTeX. Unknown error_msg)+12-7(2,7)(3,6)(4,5)(3,6)5612(3,6)(4,5)3412(2,7)1267-12-17-1 \equiv 131413141397$are the only two that work.
If there are$ (Error compiling LaTeX. Unknown error_msg)6$$ (Error compiling LaTeX. Unknown error_msg)+13(2,3,4)n11126$will also be a wrap around, so this case won't work.
Notice that there can be no more cases, as for$ (Error compiling LaTeX. Unknown error_msg)5$$ (Error compiling LaTeX. Unknown error_msg)+1+1\boxed{\textbf{C) }2}$ numbers.
Video Solution
~MathProblemSolvingSkills.com
Video Solution by Mathematical Dexterity
https://www.youtube.com/watch?v=Fy8wU4VAzkQ
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.