Difference between revisions of "1983 AIME Problems/Problem 12"
I_like_pie (talk | contribs) |
(asy fmt) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
The length of diameter <math>AB</math> is a two digit integer. Reversing the digits gives the length of a perpendicular chord <math>CD</math>. The distance from their intersection point <math>H</math> to the center <math>O</math> is a positive rational number. Determine the length of <math>AB</math>. | The length of diameter <math>AB</math> is a two digit integer. Reversing the digits gives the length of a perpendicular chord <math>CD</math>. The distance from their intersection point <math>H</math> to the center <math>O</math> is a positive rational number. Determine the length of <math>AB</math>. | ||
− | + | ||
+ | <asy> | ||
+ | pointpen=black; pathpen=black+linewidth(0.65); | ||
+ | pair O=(0,0),A=(-65/2,0),B=(65/2,0); | ||
+ | pair H=(-((65/2)^2-28^2)^.5,0),C=(H.x,28),D=(H.x,-28); | ||
+ | D(CP(O,A));D(MP("A",A,W)--MP("B",B,E));D(MP("C",C,N)--MP("D",D)); | ||
+ | dot(MP("H",H,SE));dot(MP("O",O,SE)); | ||
+ | </asy><!-- Asymptote replacement for Image:1983number12.JPG by bpms --> | ||
== Solution == | == Solution == | ||
− | Let <math>AB=10x+y</math> and <math>CD=10y+x</math>. It follows that <math>CO=\frac{AB}{2}=\frac{10x+y}{2}</math> and <math>CH=\frac{CD}{2}=\frac{10y+x}{2}</math>. Applying the [[Pythagorean Theorem]] on <math>CO</math> and <math>CH</math>, <math>OH=\sqrt{\left(\frac{10x+y}{2}\right)^2-\left(\frac{10y+x}{2}\right)^2}=\sqrt{\frac{9}{4}\cdot 11(x+y)(x-y)}=\frac{3}{2}\sqrt{11(x+y)(x-y)}</math>. | + | Let <math>AB=10x+y</math> and <math>CD=10y+x</math>. It follows that <math>CO=\frac{AB}{2}=\frac{10x+y}{2}</math> and <math>CH=\frac{CD}{2}=\frac{10y+x}{2}</math>. Applying the [[Pythagorean Theorem]] on <math>CO</math> and <math>CH</math>, <math>OH=\sqrt{\left(\frac{10x+y}{2}\right)^2-\left(\frac{10y+x}{2}\right)^2}</math> <math>=\sqrt{\frac{9}{4}\cdot 11(x+y)(x-y)}</math> <math>=\frac{3}{2}\sqrt{11(x+y)(x-y)}</math>. |
− | Because <math>OH</math> is a positive rational number, the quantity <math>\sqrt{11(x+y)(x-y)}</math> cannot contain any square roots. Therefore, <math>x+y</math> must equal eleven and <math>x-y</math> must be a perfect square (since <math>x+y>x-y</math>). The only pair <math>(x,y)</math> that satisfies this condition is <math>(6,5)</math>, so our answer is <math> | + | Because <math>OH</math> is a positive rational number, the quantity <math>\sqrt{11(x+y)(x-y)}</math> cannot contain any square roots. Therefore, <math>x+y</math> must equal eleven and <math>x-y</math> must be a perfect square (since <math>x+y>x-y</math>). The only pair <math>(x,y)</math> that satisfies this condition is <math>(6,5)</math>, so our answer is <math>\boxed{065}</math>. |
== See also == | == See also == | ||
{{AIME box|year=1983|num-b=11|num-a=13}} | {{AIME box|year=1983|num-b=11|num-a=13}} | ||
− | |||
− | |||
− | |||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] |
Revision as of 18:05, 25 April 2008
Problem
The length of diameter is a two digit integer. Reversing the digits gives the length of a perpendicular chord . The distance from their intersection point to the center is a positive rational number. Determine the length of .
Solution
Let and . It follows that and . Applying the Pythagorean Theorem on and , .
Because is a positive rational number, the quantity cannot contain any square roots. Therefore, must equal eleven and must be a perfect square (since ). The only pair that satisfies this condition is , so our answer is .
See also
1983 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |