Difference between revisions of "2005 AMC 12A Problems/Problem 9"
(→Solution 2 =) |
(→Solution) |
||
Line 10: | Line 10: | ||
=== Solution 2 === | === Solution 2 === | ||
Another method would be to use the quadratic formula, since our <math>x^2</math> coefficient is given as 4, the <math>x</math> coefficient is <math>a+8</math> and the constant term is <math>9</math>. Hence, <math>x = \frac{-(a+8) \pm \sqrt {(a+8)^2-4(4)(9)}}{2(4)}</math> Because we want only a single solution for <math>x</math>, the determinant must equal 0. Therefore, we can write <math>(a+8)^2 - 144 = 0</math> which factors to <math>a^2 + 16a - 80 = 0</math>; using [[Vieta's formulas]] we see that the sum of the solutions for <math>a</math> is the opposite of the coefficient of <math>a</math>, or <math>-16 \Rightarrow \mathrm{ (A)}</math>. | Another method would be to use the quadratic formula, since our <math>x^2</math> coefficient is given as 4, the <math>x</math> coefficient is <math>a+8</math> and the constant term is <math>9</math>. Hence, <math>x = \frac{-(a+8) \pm \sqrt {(a+8)^2-4(4)(9)}}{2(4)}</math> Because we want only a single solution for <math>x</math>, the determinant must equal 0. Therefore, we can write <math>(a+8)^2 - 144 = 0</math> which factors to <math>a^2 + 16a - 80 = 0</math>; using [[Vieta's formulas]] we see that the sum of the solutions for <math>a</math> is the opposite of the coefficient of <math>a</math>, or <math>-16 \Rightarrow \mathrm{ (A)}</math>. | ||
+ | |||
+ | === Solution 3 === | ||
+ | Using the [[discriminant]], the result must equal <math>0</math>. | ||
+ | <math>D = b^2 - 4ac</math> | ||
+ | <math> = (a+8)^2 - 4(4)(9)</math> | ||
+ | <math> = a^2 + 16a + 64 - 144</math> | ||
+ | <math> = a^2 + 16a - 80 = 0 \Rightarrow</math> | ||
+ | <math> (a + 20)(a - 4) = 0</math> | ||
+ | Therefore, <math>a = -20</math> or <math>a = 4</math>, giving a sum of <math>-16 \Rightarrow \mathrm{ (A)}</math>. | ||
== See also == | == See also == |
Revision as of 00:04, 8 February 2010
Problem
There are two values of for which the equation has only one solution for . What is the sum of these values of ?
Solution
Solution 1
A quadratic equation always has two roots, unless it has a double root. That means we can write the quadratic as a square, and the coefficients 4 and 9 suggest this. Completing the square, , so . The sum of these is .
Solution 2
Another method would be to use the quadratic formula, since our coefficient is given as 4, the coefficient is and the constant term is . Hence, Because we want only a single solution for , the determinant must equal 0. Therefore, we can write which factors to ; using Vieta's formulas we see that the sum of the solutions for is the opposite of the coefficient of , or .
Solution 3
Using the discriminant, the result must equal . Therefore, or , giving a sum of .
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |