Difference between revisions of "2011 AMC 8 Problems/Problem 20"

m (Added Solution and See Also headers)
Line 28: Line 28:
  
 
==Solution==
 
==Solution==
 +
 +
<asy>
 +
unitsize(1.5mm);
 +
defaultpen(linewidth(.9pt)+fontsize(10pt));
 +
dotfactor=3;
 +
 +
pair A,B,C,D,X,Y;
 +
A=(9,12); B=(59,12); C=(75,0); D=(0,0); X=(9,0); Y=(59,0);
 +
draw(A--B--C--D--cycle);
 +
draw(A--X); draw(B--Y);
 +
 +
pair[] ps={A,B,C,D,X,Y};
 +
dot(ps);
 +
 +
label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW);
 +
label("$X$",X,SE); label("$Y$",Y,S);
 +
label("$a$",D--X,S); label("$b$",Y--C,S);
 +
label("$15$",D--A,NW); label("$50$",B--A,N); label("$20$",B--C,NE); label("$12$",X--A,E); label("$12$",Y--B,W);
 +
</asy>
 +
 +
If you draw altitudes from <math>A</math> and <math>B</math> to <math>CD,</math> the trapezoid will be divided into two right triangles and a rectangle. You can find the values of <math>a</math> and <math>b</math> with the [[Pythagorean theorem]].
 +
 +
<cmath>a=\sqrt{15^2-12^2}=\sqrt{81}=9</cmath>
 +
 +
<cmath>b=\sqrt{20^2-12^2}=\sqrt{256}=16</cmath>
 +
 +
<math>ABYX</math> is a rectangle so <math>XY=AB=50.</math>
 +
 +
<cmath>CD=a+XY+b=9+50+16=75</cmath>
 +
 +
The area of the trapezoid is
 +
 +
<cmath>12\cdot \frac{(50+75)}{2} = 6(125) = \boxed{\textbf{(D)}\ 750}</cmath>
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2011|num-b=19|num-a=21}}
 
{{AMC8 box|year=2011|num-b=19|num-a=21}}

Revision as of 21:14, 25 November 2011

Quadrilateral $ABCD$ is a trapezoid, $AD = 15$, $AB = 50$, $BC = 20$, and the altitude is $12$. What is the area of the trapeziod?

[asy] pair A,B,C,D; A=(3,20); B=(35,20); C=(47,0); D=(0,0); draw(A--B--C--D--cycle); dot((0,0)); dot((3,20)); dot((35,20)); dot((47,0)); label("A",A,N); label("B",B,N); label("C",C,S); label("D",D,S); draw((19,20)--(19,0)); dot((19,20)); dot((19,0)); draw((19,3)--(22,3)--(22,0)); label("12",(21,10),E); label("50",(19,22),N); label("15",(1,10),W); label("20",(41,12),E);[/asy]

$\textbf{(A) }600\qquad\textbf{(B) }650\qquad\textbf{(C) }700\qquad\textbf{(D) }750\qquad\textbf{(E) }800$

Solution

[asy] unitsize(1.5mm); defaultpen(linewidth(.9pt)+fontsize(10pt)); dotfactor=3;  pair A,B,C,D,X,Y; A=(9,12); B=(59,12); C=(75,0); D=(0,0); X=(9,0); Y=(59,0); draw(A--B--C--D--cycle); draw(A--X); draw(B--Y);  pair[] ps={A,B,C,D,X,Y}; dot(ps);  label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$X$",X,SE); label("$Y$",Y,S); label("$a$",D--X,S); label("$b$",Y--C,S); label("$15$",D--A,NW); label("$50$",B--A,N); label("$20$",B--C,NE); label("$12$",X--A,E); label("$12$",Y--B,W); [/asy]

If you draw altitudes from $A$ and $B$ to $CD,$ the trapezoid will be divided into two right triangles and a rectangle. You can find the values of $a$ and $b$ with the Pythagorean theorem.

\[a=\sqrt{15^2-12^2}=\sqrt{81}=9\]

\[b=\sqrt{20^2-12^2}=\sqrt{256}=16\]

$ABYX$ is a rectangle so $XY=AB=50.$

\[CD=a+XY+b=9+50+16=75\]

The area of the trapezoid is

\[12\cdot \frac{(50+75)}{2} = 6(125) = \boxed{\textbf{(D)}\ 750}\]

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions