Difference between revisions of "2012 AIME I Problems/Problem 1"
(→Problem 1) |
m (→Solution) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | A positive integer is divisible by <math>4</math> if and only if its last two digits are divisible by 4. For any value of <math>b</math>, there are two possible values for <math>a</math> and <math>c</math>, since we find that if <math>b</math> is even, <math>a</math> and <math>c</math> must be either <math>4</math> or <math>8</math>, and if <math>b</math> is odd, <math>a</math> and <math>c</math> must be either <math>2</math> or <math>6</math>. | + | A positive integer is divisible by <math>4</math> if and only if its last two digits are divisible by <math>4.</math> For any value of <math>b</math>, there are two possible values for <math>a</math> and <math>c</math>, since we find that if <math>b</math> is even, <math>a</math> and <math>c</math> must be either <math>4</math> or <math>8</math>, and if <math>b</math> is odd, <math>a</math> and <math>c</math> must be either <math>2</math> or <math>6</math>. There are thus <math>2 * 2 = 4</math> ways to choose <math>a</math> and <math>c</math> for each <math>b,</math> and <math>10</math> ways to choose <math>b</math> since <math>b</math> can be any digit. The final answer is then <math>4 * 10 = \boxed{040}</math>. |
== See also == | == See also == | ||
{{AIME box|year=2012|n=I|before=First Problem|num-a=2}} | {{AIME box|year=2012|n=I|before=First Problem|num-a=2}} |
Revision as of 00:48, 17 March 2012
Problem 1
Find the number of positive integers with three not necessarily distinct digits, , with and such that both and are multiples of .
Solution
A positive integer is divisible by if and only if its last two digits are divisible by For any value of , there are two possible values for and , since we find that if is even, and must be either or , and if is odd, and must be either or . There are thus ways to choose and for each and ways to choose since can be any digit. The final answer is then .
See also
2012 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |