Difference between revisions of "1974 AHSME Problems"
(Created page with "==Problem 1== If <math> x\not=0 </math> or <math> 4 </math> and <math> y\not=0 </math> or <math> 6 </math>, then <math> \frac{2}{x}+\frac{3}{y}=\frac{1}{2} </math> is equivalent ...") |
|||
Line 6: | Line 6: | ||
<math> \mathrm{(D) \ } \frac{4y}{y-6}=x \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(D) \ } \frac{4y}{y-6}=x \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 1|Solution]] | ||
==Problem 2== | ==Problem 2== | ||
Let <math> x_1 </math> and <math> x_2 </math> be such that <math> x_1\not=x_2 </math> and <math> 3x_i^2-hx_i=b </math>, <math> i=1, 2 </math>. Then <math> x_1+x_2 </math> equals | Let <math> x_1 </math> and <math> x_2 </math> be such that <math> x_1\not=x_2 </math> and <math> 3x_i^2-hx_i=b </math>, <math> i=1, 2 </math>. Then <math> x_1+x_2 </math> equals | ||
Line 11: | Line 12: | ||
<math> \mathrm{(A)\ } -\frac{h}{3} \qquad \mathrm{(B) \ }\frac{h}{3} \qquad \mathrm{(C) \ } \frac{b}{3} \qquad \mathrm{(D) \ } 2b \qquad \mathrm{(E) \ }-\frac{b}{3} </math> | <math> \mathrm{(A)\ } -\frac{h}{3} \qquad \mathrm{(B) \ }\frac{h}{3} \qquad \mathrm{(C) \ } \frac{b}{3} \qquad \mathrm{(D) \ } 2b \qquad \mathrm{(E) \ }-\frac{b}{3} </math> | ||
+ | [[1974 AHSME Problems/Problem 2|Solution]] | ||
==Problem 3== | ==Problem 3== | ||
The coefficient of <math> x^7 </math> in the polynomial expansion of | The coefficient of <math> x^7 </math> in the polynomial expansion of | ||
Line 20: | Line 22: | ||
<math> \mathrm{(A)\ } -8 \qquad \mathrm{(B) \ }12 \qquad \mathrm{(C) \ } 6 \qquad \mathrm{(D) \ } -12 \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(A)\ } -8 \qquad \mathrm{(B) \ }12 \qquad \mathrm{(C) \ } 6 \qquad \mathrm{(D) \ } -12 \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 3|Solution]] | ||
==Problem 4== | ==Problem 4== | ||
What is the remainder when <math> x^{51}+51 </math> is divided by <math> x+1 </math>? | What is the remainder when <math> x^{51}+51 </math> is divided by <math> x+1 </math>? | ||
Line 25: | Line 28: | ||
<math> \mathrm{(A)\ } 0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 49 \qquad \mathrm{(D) \ } 50 \qquad \mathrm{(E) \ }51 </math> | <math> \mathrm{(A)\ } 0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 49 \qquad \mathrm{(D) \ } 50 \qquad \mathrm{(E) \ }51 </math> | ||
+ | [[1974 AHSME Problems/Problem 4|Solution]] | ||
==Problem 5== | ==Problem 5== | ||
Given a quadrilateral <math> ABCD </math> inscribed in a circle with side <math> AB </math> extended beyond <math> B </math> to point <math> E </math>, if <math> \measuredangle BAD=92^\circ </math> and <math> \measuredangle ADC=68^\circ </math>, find <math> \measuredangle EBC </math>. | Given a quadrilateral <math> ABCD </math> inscribed in a circle with side <math> AB </math> extended beyond <math> B </math> to point <math> E </math>, if <math> \measuredangle BAD=92^\circ </math> and <math> \measuredangle ADC=68^\circ </math>, find <math> \measuredangle EBC </math>. | ||
Line 30: | Line 34: | ||
<math> \mathrm{(A)\ } 66^\circ \qquad \mathrm{(B) \ }68^\circ \qquad \mathrm{(C) \ } 70^\circ \qquad \mathrm{(D) \ } 88^\circ \qquad \mathrm{(E) \ }92^\circ </math> | <math> \mathrm{(A)\ } 66^\circ \qquad \mathrm{(B) \ }68^\circ \qquad \mathrm{(C) \ } 70^\circ \qquad \mathrm{(D) \ } 88^\circ \qquad \mathrm{(E) \ }92^\circ </math> | ||
+ | [[1974 AHSME Problems/Problem 5|Solution]] | ||
==Problem 6== | ==Problem 6== | ||
For positive real numbers <math> x </math> and <math> y </math> define <math> x*y=\frac{x\cdot y}{x+y} </math>' then | For positive real numbers <math> x </math> and <math> y </math> define <math> x*y=\frac{x\cdot y}{x+y} </math>' then | ||
Line 43: | Line 48: | ||
<math>\mathrm{(E) \ }\text{none of these} \qquad </math> | <math>\mathrm{(E) \ }\text{none of these} \qquad </math> | ||
+ | [[1974 AHSME Problems/Problem 6|Solution]] | ||
==Problem 7== | ==Problem 7== | ||
A town's population increased by <math> 1,200 </math> people, and then this new population decreased by <math> 11\% </math>. The town now had <math> 32 </math> less people than it did before the <math> 1,200 </math> increase. What is the original population? | A town's population increased by <math> 1,200 </math> people, and then this new population decreased by <math> 11\% </math>. The town now had <math> 32 </math> less people than it did before the <math> 1,200 </math> increase. What is the original population? | ||
Line 48: | Line 54: | ||
<math> \mathrm{(A)\ } 1,200 \qquad \mathrm{(B) \ }11,200 \qquad \mathrm{(C) \ } 9,968 \qquad \mathrm{(D) \ } 10,000 \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(A)\ } 1,200 \qquad \mathrm{(B) \ }11,200 \qquad \mathrm{(C) \ } 9,968 \qquad \mathrm{(D) \ } 10,000 \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 7|Solution]] | ||
==Problem 8== | ==Problem 8== | ||
What is the smallest prime number dividing the sum <math> 3^{11}+5^{13} </math>? | What is the smallest prime number dividing the sum <math> 3^{11}+5^{13} </math>? | ||
Line 53: | Line 60: | ||
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \ } 5 \qquad \mathrm{(D) \ } 3^{11}+5^{13} \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \ } 5 \qquad \mathrm{(D) \ } 3^{11}+5^{13} \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 8|Solution]] | ||
==Problem 9== | ==Problem 9== | ||
The integers greater than one are arranged in five columns as follows: | The integers greater than one are arranged in five columns as follows: | ||
Line 64: | Line 72: | ||
<math> \mathrm{(A)\ } \text{first} \qquad \mathrm{(B) \ }\text{second} \qquad \mathrm{(C) \ } \text{third} \qquad \mathrm{(D) \ } 3\text{fourth} \qquad \mathrm{(E) \ }\text{fifth} </math> | <math> \mathrm{(A)\ } \text{first} \qquad \mathrm{(B) \ }\text{second} \qquad \mathrm{(C) \ } \text{third} \qquad \mathrm{(D) \ } 3\text{fourth} \qquad \mathrm{(E) \ }\text{fifth} </math> | ||
+ | [[1974 AHSME Problems/Problem 9|Solution]] | ||
==Problem 10== | ==Problem 10== | ||
What is the smallest integral value of <math> k </math> such that | What is the smallest integral value of <math> k </math> such that | ||
Line 73: | Line 82: | ||
<math> \mathrm{(A)\ } -1 \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } 4 \qquad \mathrm{(E) \ }5 </math> | <math> \mathrm{(A)\ } -1 \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } 4 \qquad \mathrm{(E) \ }5 </math> | ||
+ | [[1974 AHSME Problems/Problem 10|Solution]] | ||
==Problem 11== | ==Problem 11== | ||
If <math> (a, b) </math> and <math> (c, d) </math> are two points on the line whose equation is <math> y=mx+k </math>, then the distance between <math> (a, b) </math> and <math> (c, d) </math>, in terms of <math> a, c, </math> and <math> m </math> is | If <math> (a, b) </math> and <math> (c, d) </math> are two points on the line whose equation is <math> y=mx+k </math>, then the distance between <math> (a, b) </math> and <math> (c, d) </math>, in terms of <math> a, c, </math> and <math> m </math> is | ||
Line 80: | Line 90: | ||
<math> \mathrm{(D) \ } |a-c|(1+m^2) \qquad \mathrm{(E) \ }|a-c|\,|m| </math> | <math> \mathrm{(D) \ } |a-c|(1+m^2) \qquad \mathrm{(E) \ }|a-c|\,|m| </math> | ||
+ | [[1974 AHSME Problems/Problem 11|Solution]] | ||
==Problem 12== | ==Problem 12== | ||
If <math> g(x)=1-x^2 </math> and <math> f(g(x))=\frac{1-x^2}{x^2} </math> when <math> x\not=0 </math>, then <math> f(1/2) </math> equals | If <math> g(x)=1-x^2 </math> and <math> f(g(x))=\frac{1-x^2}{x^2} </math> when <math> x\not=0 </math>, then <math> f(1/2) </math> equals | ||
Line 85: | Line 96: | ||
<math> \mathrm{(A)\ } 3/4 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } \sqrt{2}/2 \qquad \mathrm{(E) \ }\sqrt{2} </math> | <math> \mathrm{(A)\ } 3/4 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \ } 3 \qquad \mathrm{(D) \ } \sqrt{2}/2 \qquad \mathrm{(E) \ }\sqrt{2} </math> | ||
+ | [[1974 AHSME Problems/Problem 12|Solution]] | ||
==Problem 13== | ==Problem 13== | ||
Which of the following is equivalent to "If P is true, then Q is false."? | Which of the following is equivalent to "If P is true, then Q is false."? | ||
Line 98: | Line 110: | ||
<math> \mathrm{(E) \ }\text{``If Q is true then P is true."} \qquad </math> | <math> \mathrm{(E) \ }\text{``If Q is true then P is true."} \qquad </math> | ||
+ | [[1974 AHSME Problems/Problem 13|Solution]] | ||
==Problem 14== | ==Problem 14== | ||
Which statement is correct? | Which statement is correct? | ||
Line 107: | Line 120: | ||
<math> \qquad \mathrm{(E) \ }\text{If } x<1, \text{then } x^2<x. </math> | <math> \qquad \mathrm{(E) \ }\text{If } x<1, \text{then } x^2<x. </math> | ||
+ | [[1974 AHSME Problems/Problem 14|Solution]] | ||
==Problem 15== | ==Problem 15== | ||
If <math> x<-2 </math>, then <math> |1-|1+x|| </math> equals | If <math> x<-2 </math>, then <math> |1-|1+x|| </math> equals | ||
Line 112: | Line 126: | ||
<math> \mathrm{(A)\ } 2+x \qquad \mathrm{(B) \ }-2-x \qquad \mathrm{(C) \ } x \qquad \mathrm{(D) \ } -x \qquad \mathrm{(E) \ }-2 </math> | <math> \mathrm{(A)\ } 2+x \qquad \mathrm{(B) \ }-2-x \qquad \mathrm{(C) \ } x \qquad \mathrm{(D) \ } -x \qquad \mathrm{(E) \ }-2 </math> | ||
+ | [[1974 AHSME Problems/Problem 15|Solution]] | ||
==Problem 16== | ==Problem 16== | ||
A circle of radius <math> r </math> is inscribed in a right isosceles triangle, and a circle of radius <math> R </math> is circumscribed about the triangle. Then <math> R/r </math> equals | A circle of radius <math> r </math> is inscribed in a right isosceles triangle, and a circle of radius <math> R </math> is circumscribed about the triangle. Then <math> R/r </math> equals | ||
Line 117: | Line 132: | ||
<math> \mathrm{(A)\ } 1+\sqrt{2} \qquad \mathrm{(B) \ }\frac{2+\sqrt{2}}{2} \qquad \mathrm{(C) \ } \frac{\sqrt{2}-1}{2} \qquad \mathrm{(D) \ } \frac{1+\sqrt{2}}{2} \qquad \mathrm{(E) \ }2(2-\sqrt{2}) </math> | <math> \mathrm{(A)\ } 1+\sqrt{2} \qquad \mathrm{(B) \ }\frac{2+\sqrt{2}}{2} \qquad \mathrm{(C) \ } \frac{\sqrt{2}-1}{2} \qquad \mathrm{(D) \ } \frac{1+\sqrt{2}}{2} \qquad \mathrm{(E) \ }2(2-\sqrt{2}) </math> | ||
+ | [[1974 AHSME Problems/Problem 16|Solution]] | ||
==Problem 17== | ==Problem 17== | ||
If <math> i^2=-1 </math>, then <math> (1+i)^{20}-(1-i)^{20} </math> equals | If <math> i^2=-1 </math>, then <math> (1+i)^{20}-(1-i)^{20} </math> equals | ||
Line 122: | Line 138: | ||
<math> \mathrm{(A)\ } -1024 \qquad \mathrm{(B) \ }-1024i \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 1024 \qquad \mathrm{(E) \ }1024i </math> | <math> \mathrm{(A)\ } -1024 \qquad \mathrm{(B) \ }-1024i \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } 1024 \qquad \mathrm{(E) \ }1024i </math> | ||
+ | [[1974 AHSME Problems/Problem 17|Solution]] | ||
==Problem 18== | ==Problem 18== | ||
If <math> \log_8{3}=p </math> and <math> \log_3{5}=q </math>, then, in terms of <math> p </math> and <math> q </math>, <math> \log_{10}{5} </math> equals | If <math> \log_8{3}=p </math> and <math> \log_3{5}=q </math>, then, in terms of <math> p </math> and <math> q </math>, <math> \log_{10}{5} </math> equals | ||
Line 127: | Line 144: | ||
<math> \mathrm{(A)\ } pq \qquad \mathrm{(B) \ }\frac{3p+q}{5} \qquad \mathrm{(C) \ } \frac{1+3pq}{p+q} \qquad \mathrm{(D) \ } \frac{3pq}{1+3pq} \qquad \mathrm{(E) \ }p^2+q^2 </math> | <math> \mathrm{(A)\ } pq \qquad \mathrm{(B) \ }\frac{3p+q}{5} \qquad \mathrm{(C) \ } \frac{1+3pq}{p+q} \qquad \mathrm{(D) \ } \frac{3pq}{1+3pq} \qquad \mathrm{(E) \ }p^2+q^2 </math> | ||
+ | [[1974 AHSME Problems/Problem 18|Solution]] | ||
==Problem 19== | ==Problem 19== | ||
In the adjoining figure <math> ABCD </math> is a square and <math> CMN </math> is an equilateral triangle. If the area of <math> ABCD </math> is one square inch, then the area of <math> CMN </math> in square inches is | In the adjoining figure <math> ABCD </math> is a square and <math> CMN </math> is an equilateral triangle. If the area of <math> ABCD </math> is one square inch, then the area of <math> CMN </math> in square inches is | ||
Line 142: | Line 160: | ||
<math> \mathrm{(A)\ } 2\sqrt{3}-3 \qquad \mathrm{(B) \ }1-\frac{\sqrt{3}}{3} \qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4} \qquad \mathrm{(D) \ } \frac{\sqrt{2}}{3} \qquad \mathrm{(E) \ }4-2\sqrt{3} </math> | <math> \mathrm{(A)\ } 2\sqrt{3}-3 \qquad \mathrm{(B) \ }1-\frac{\sqrt{3}}{3} \qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4} \qquad \mathrm{(D) \ } \frac{\sqrt{2}}{3} \qquad \mathrm{(E) \ }4-2\sqrt{3} </math> | ||
+ | [[1974 AHSME Problems/Problem 19|Solution]] | ||
==Problem 20== | ==Problem 20== | ||
Let | Let | ||
Line 153: | Line 172: | ||
<math> \mathrm{(E) \ }T=\frac{1}{(3-\sqrt{8})(\sqrt{8}-\sqrt{7})(\sqrt{7}-\sqrt{6})(\sqrt{6}-\sqrt{5})(\sqrt{5}-2)} </math> | <math> \mathrm{(E) \ }T=\frac{1}{(3-\sqrt{8})(\sqrt{8}-\sqrt{7})(\sqrt{7}-\sqrt{6})(\sqrt{6}-\sqrt{5})(\sqrt{5}-2)} </math> | ||
+ | [[1974 AHSME Problems/Problem 20|Solution]] | ||
==Problem 21== | ==Problem 21== | ||
In a geometric series of positive terms the difference between the fifth and fourth terms is <math> 576 </math>, and the difference between the second and first terms is <math> 9 </math>. What is the sum of the first five terms of this series? | In a geometric series of positive terms the difference between the fifth and fourth terms is <math> 576 </math>, and the difference between the second and first terms is <math> 9 </math>. What is the sum of the first five terms of this series? | ||
Line 158: | Line 178: | ||
<math> \mathrm{(A)\ } 1061 \qquad \mathrm{(B) \ }1023 \qquad \mathrm{(C) \ } 1024 \qquad \mathrm{(D) \ } 768 \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(A)\ } 1061 \qquad \mathrm{(B) \ }1023 \qquad \mathrm{(C) \ } 1024 \qquad \mathrm{(D) \ } 768 \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 21|Solution]] | ||
==Problem 22== | ==Problem 22== | ||
The minimum of <math> \sin\frac{A}{2}-\sqrt{3}\cos\frac{A}{2} </math> is attained when <math> A </math> is | The minimum of <math> \sin\frac{A}{2}-\sqrt{3}\cos\frac{A}{2} </math> is attained when <math> A </math> is | ||
Line 163: | Line 184: | ||
<math> \mathrm{(A)\ } -180^\circ \qquad \mathrm{(B) \ }60^\circ \qquad \mathrm{(C) \ } 120^\circ \qquad \mathrm{(D) \ } 0^\circ \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(A)\ } -180^\circ \qquad \mathrm{(B) \ }60^\circ \qquad \mathrm{(C) \ } 120^\circ \qquad \mathrm{(D) \ } 0^\circ \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 22|Solution]] | ||
==Problem 23== | ==Problem 23== | ||
In the adjoining figure <math> TP </math> and <math> T'Q </math> are parallel tangents to a circle of radius <math> r </math>, with <math> T </math> and <math> T' </math> the points of tangency. <math> PT''Q </math> is a third tangent with <math> T''' </math> as a point of tangency. If <math> TP=4 </math> and <math> T'Q=9 </math> then <math> r </math> is | In the adjoining figure <math> TP </math> and <math> T'Q </math> are parallel tangents to a circle of radius <math> r </math>, with <math> T </math> and <math> T' </math> the points of tangency. <math> PT''Q </math> is a third tangent with <math> T''' </math> as a point of tangency. If <math> TP=4 </math> and <math> T'Q=9 </math> then <math> r </math> is | ||
Line 187: | Line 209: | ||
<math> \mathrm{(E) \ }\text{not determinable from the given information} </math> | <math> \mathrm{(E) \ }\text{not determinable from the given information} </math> | ||
+ | [[1974 AHSME Problems/Problem 23|Solution]] | ||
==Problem 24== | ==Problem 24== | ||
A fair die is rolled six times. The probability of rolling at least a five at least five times is | A fair die is rolled six times. The probability of rolling at least a five at least five times is | ||
Line 192: | Line 215: | ||
<math> \mathrm{(A)\ } \frac{13}{729} \qquad \mathrm{(B) \ }\frac{12}{729} \qquad \mathrm{(C) \ } \frac{2}{729} \qquad \mathrm{(D) \ } \frac{3}{729} \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(A)\ } \frac{13}{729} \qquad \mathrm{(B) \ }\frac{12}{729} \qquad \mathrm{(C) \ } \frac{2}{729} \qquad \mathrm{(D) \ } \frac{3}{729} \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 24|Solution]] | ||
==Problem 25== | ==Problem 25== | ||
In parallelogram <math> ABCD </math> of the accompanying diagram, line <math> DP </math> is drawn bisecting <math> BC </math> at <math> N </math> and meeting <math> AB </math> (extended) at <math> P </math>. From vertex <math> C </math>, line <math> CQ </math> is drawn bisecting side <math> AD </math> at <math> M </math> and meeting <math> AB </math> (extended) at <math> Q </math>. Lines <math> DP </math> and <math> CQ </math> meet at <math> O </math>. If the area of parallelogram <math> ABCD </math> is <math> k </math>, then the area of the triangle <math> QPO </math> is equal to | In parallelogram <math> ABCD </math> of the accompanying diagram, line <math> DP </math> is drawn bisecting <math> BC </math> at <math> N </math> and meeting <math> AB </math> (extended) at <math> P </math>. From vertex <math> C </math>, line <math> CQ </math> is drawn bisecting side <math> AD </math> at <math> M </math> and meeting <math> AB </math> (extended) at <math> Q </math>. Lines <math> DP </math> and <math> CQ </math> meet at <math> O </math>. If the area of parallelogram <math> ABCD </math> is <math> k </math>, then the area of the triangle <math> QPO </math> is equal to | ||
Line 211: | Line 235: | ||
<math> \mathrm{(A)\ } k \qquad \mathrm{(B) \ }\frac{6k}{5} \qquad \mathrm{(C) \ } \frac{9k}{8} \qquad \mathrm{(D) \ } \frac{5k}{4} \qquad \mathrm{(E) \ }2k </math> | <math> \mathrm{(A)\ } k \qquad \mathrm{(B) \ }\frac{6k}{5} \qquad \mathrm{(C) \ } \frac{9k}{8} \qquad \mathrm{(D) \ } \frac{5k}{4} \qquad \mathrm{(E) \ }2k </math> | ||
+ | [[1974 AHSME Problems/Problem 25|Solution]] | ||
==Problem 26== | ==Problem 26== | ||
The number of distinct positive integral divisors of <math> (30)^4 </math> excluding <math> 1 </math> and <math> (30)^4 </math> is | The number of distinct positive integral divisors of <math> (30)^4 </math> excluding <math> 1 </math> and <math> (30)^4 </math> is | ||
Line 216: | Line 241: | ||
<math> \mathrm{(A)\ } 100 \qquad \mathrm{(B) \ }125 \qquad \mathrm{(C) \ } 123 \qquad \mathrm{(D) \ } 30 \qquad \mathrm{(E) \ }\text{none of these} </math> | <math> \mathrm{(A)\ } 100 \qquad \mathrm{(B) \ }125 \qquad \mathrm{(C) \ } 123 \qquad \mathrm{(D) \ } 30 \qquad \mathrm{(E) \ }\text{none of these} </math> | ||
+ | [[1974 AHSME Problems/Problem 26|Solution]] | ||
==Problem 27== | ==Problem 27== | ||
If <math> f(x)=3x+2 </math> for all real <math> x </math>, then the statement: | If <math> f(x)=3x+2 </math> for all real <math> x </math>, then the statement: | ||
Line 223: | Line 249: | ||
<math> \mathrm{(A)}\ b\le a/3\qquad\mathrm{(B)}\ b > a/3\qquad\mathrm{(C)}\ a\le b/3\qquad\mathrm{(D)}\ a > b/3\\ \qquad\mathrm{(E)}\ \text{The statement is never true.} </math> | <math> \mathrm{(A)}\ b\le a/3\qquad\mathrm{(B)}\ b > a/3\qquad\mathrm{(C)}\ a\le b/3\qquad\mathrm{(D)}\ a > b/3\\ \qquad\mathrm{(E)}\ \text{The statement is never true.} </math> | ||
+ | [[1974 AHSME Problems/Problem 27|Solution]] | ||
==Problem 28== | ==Problem 28== | ||
Which of the following is satisfied by all numbers <math> x </math> of the form | Which of the following is satisfied by all numbers <math> x </math> of the form | ||
Line 234: | Line 261: | ||
<math> \mathrm{(D) \ } 0\le x<1/3 \text{ or }2/3\le x<1 \qquad \mathrm{(E) \ }1/2\le x\le 3/4 </math> | <math> \mathrm{(D) \ } 0\le x<1/3 \text{ or }2/3\le x<1 \qquad \mathrm{(E) \ }1/2\le x\le 3/4 </math> | ||
+ | [[1974 AHSME Problems/Problem 28|Solution]] | ||
==Problem 29== | ==Problem 29== | ||
For <math> p=1, 2, \cdots, 10 </math> let <math> S_p </math> be the sum of the first <math> 40 </math> terms of the arithmetic progression whose first term is <math> p </math> and whose common difference is <math> 2p-1 </math>; then <math> S_1+S_2+\cdots+S_{10} </math> is | For <math> p=1, 2, \cdots, 10 </math> let <math> S_p </math> be the sum of the first <math> 40 </math> terms of the arithmetic progression whose first term is <math> p </math> and whose common difference is <math> 2p-1 </math>; then <math> S_1+S_2+\cdots+S_{10} </math> is | ||
Line 239: | Line 267: | ||
<math> \mathrm{(A)\ } 80000 \qquad \mathrm{(B) \ }80200 \qquad \mathrm{(C) \ } 80400 \qquad \mathrm{(D) \ } 80600 \qquad \mathrm{(E) \ }80800 </math> | <math> \mathrm{(A)\ } 80000 \qquad \mathrm{(B) \ }80200 \qquad \mathrm{(C) \ } 80400 \qquad \mathrm{(D) \ } 80600 \qquad \mathrm{(E) \ }80800 </math> | ||
+ | [[1974 AHSME Problems/Problem 29|Solution]] | ||
==Problem 30== | ==Problem 30== | ||
A line segment is divided so that the lesser part is to the greater part as the greater part is to the whole. If <math> R </math> is the ratio of the lesser part to the greater part, then the value of | A line segment is divided so that the lesser part is to the greater part as the greater part is to the whole. If <math> R </math> is the ratio of the lesser part to the greater part, then the value of | ||
Line 248: | Line 277: | ||
<math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }2R \qquad \mathrm{(C) \ } R^{-1} \qquad \mathrm{(D) \ } 2+R^{-1} \qquad \mathrm{(E) \ }2+R </math> | <math> \mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }2R \qquad \mathrm{(C) \ } R^{-1} \qquad \mathrm{(D) \ } 2+R^{-1} \qquad \mathrm{(E) \ }2+R </math> | ||
+ | [[1974 AHSME Problems/Problem 30|Solution]] | ||
==See Also== | ==See Also== | ||
*[[AHSME]] | *[[AHSME]] | ||
*[[1974 AHSME]] | *[[1974 AHSME]] |
Revision as of 14:36, 26 May 2012
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 Problem 26
- 27 Problem 27
- 28 Problem 28
- 29 Problem 29
- 30 Problem 30
- 31 See Also
Problem 1
If or and or , then is equivalent to
Problem 2
Let and be such that and , . Then equals
Problem 3
The coefficient of in the polynomial expansion of
is
Problem 4
What is the remainder when is divided by ?
Problem 5
Given a quadrilateral inscribed in a circle with side extended beyond to point , if and , find .
Problem 6
For positive real numbers and define ' then
Problem 7
A town's population increased by people, and then this new population decreased by . The town now had less people than it did before the increase. What is the original population?
Problem 8
What is the smallest prime number dividing the sum ?
Problem 9
The integers greater than one are arranged in five columns as follows:
(Four consecutive integers appear in each row; in the first, third and other odd numbered rows, the integers appear in the last four columns and increase from left to right; in the second, fourth and other even numbered rows, the integers appear in the first four columns and increase from right to left.)
In which column will the number fall?
Problem 10
What is the smallest integral value of such that
has no real roots?
Problem 11
If and are two points on the line whose equation is , then the distance between and , in terms of and is
Problem 12
If and when , then equals
Problem 13
Which of the following is equivalent to "If P is true, then Q is false."?
Problem 14
Which statement is correct?
Problem 15
If , then equals
Problem 16
A circle of radius is inscribed in a right isosceles triangle, and a circle of radius is circumscribed about the triangle. Then equals
Problem 17
If , then equals
Problem 18
If and , then, in terms of and , equals
Problem 19
In the adjoining figure is a square and is an equilateral triangle. If the area of is one square inch, then the area of in square inches is
Problem 20
Let
\[T=\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}.\] (Error making remote request. Unexpected URL sent back)
Then
Problem 21
In a geometric series of positive terms the difference between the fifth and fourth terms is , and the difference between the second and first terms is . What is the sum of the first five terms of this series?
Problem 22
The minimum of is attained when is
Problem 23
In the adjoining figure and are parallel tangents to a circle of radius , with and the points of tangency. is a third tangent with as a point of tangency. If and then is
Problem 24
A fair die is rolled six times. The probability of rolling at least a five at least five times is
Problem 25
In parallelogram of the accompanying diagram, line is drawn bisecting at and meeting (extended) at . From vertex , line is drawn bisecting side at and meeting (extended) at . Lines and meet at . If the area of parallelogram is , then the area of the triangle is equal to
Problem 26
The number of distinct positive integral divisors of excluding and is
Problem 27
If for all real , then the statement: " whenever and and " is true when
Problem 28
Which of the following is satisfied by all numbers of the form
where is or , is or ,..., is or ?
Problem 29
For let be the sum of the first terms of the arithmetic progression whose first term is and whose common difference is ; then is
Problem 30
A line segment is divided so that the lesser part is to the greater part as the greater part is to the whole. If is the ratio of the lesser part to the greater part, then the value of
is