Difference between revisions of "2012 AMC 8 Problems/Problem 3"

Line 2: Line 2:
  
 
<math> \textbf{(A)}\hspace{.05in}5:10\textsc{pm}\quad\textbf{(B)}\hspace{.05in}5:21\textsc{pm}\quad\textbf{(C)}\hspace{.05in}5:41\textsc{pm}\quad\textbf{(D)}\hspace{.05in}5:57\textsc{pm}\quad\textbf{(E)}\hspace{.05in}6:03\textsc{pm} </math>
 
<math> \textbf{(A)}\hspace{.05in}5:10\textsc{pm}\quad\textbf{(B)}\hspace{.05in}5:21\textsc{pm}\quad\textbf{(C)}\hspace{.05in}5:41\textsc{pm}\quad\textbf{(D)}\hspace{.05in}5:57\textsc{pm}\quad\textbf{(E)}\hspace{.05in}6:03\textsc{pm} </math>
 +
 +
==Solution==
 +
The problem wants us to find the time of sunset and gives us the length of daylight and time of sunrise. So all we have to do is add the length of daylight to the time of sunrise to obtain the answer. Convert 10 hours and 24 minutes into <math>10:24</math> in order to add easier.
 +
 +
Adding, we find that the time of sunset is <math> 6:57\textsc{am} + 10:24 \implies 17:21 \implies  \boxed{\textbf{(B)}\ 5:21\textsc{pm}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2012|num-b=2|num-a=4}}
 
{{AMC8 box|year=2012|num-b=2|num-a=4}}

Revision as of 09:53, 24 November 2012

On February 13 $\emph{The Oshkosh Northwester}$ listed the length of daylight as 10 hours and 24 minutes, the sunrise was $6:57\textsc{am}$, and the sunset as $8:15\textsc{pm}$. The length of daylight and sunrise were correct, but the sunset was wrong. When did the sun really set?

$\textbf{(A)}\hspace{.05in}5:10\textsc{pm}\quad\textbf{(B)}\hspace{.05in}5:21\textsc{pm}\quad\textbf{(C)}\hspace{.05in}5:41\textsc{pm}\quad\textbf{(D)}\hspace{.05in}5:57\textsc{pm}\quad\textbf{(E)}\hspace{.05in}6:03\textsc{pm}$

Solution

The problem wants us to find the time of sunset and gives us the length of daylight and time of sunrise. So all we have to do is add the length of daylight to the time of sunrise to obtain the answer. Convert 10 hours and 24 minutes into $10:24$ in order to add easier.

Adding, we find that the time of sunset is $6:57\textsc{am} + 10:24 \implies 17:21 \implies  \boxed{\textbf{(B)}\ 5:21\textsc{pm}}$.

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions