Difference between revisions of "1974 AHSME Problems/Problem 19"

m (added)
Line 22: Line 22:
 
{{AHSME box|year=1974|num-b=18|num-a=20}}
 
{{AHSME box|year=1974|num-b=18|num-a=20}}
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Revision as of 11:43, 5 July 2013

Problem

In the adjoining figure $ABCD$ is a square and $CMN$ is an equilateral triangle. If the area of $ABCD$ is one square inch, then the area of $CMN$ in square inches is

[asy] draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); draw((.82,0)--(1,1)--(0,.76)--cycle); label("A", (0,0), S); label("B", (1,0), S); label("C", (1,1), N); label("D", (0,1), N); label("M", (0,.76), W); label("N", (.82,0), S);[/asy]

$\mathrm{(A)\ } 2\sqrt{3}-3 \qquad \mathrm{(B) \ }1-\frac{\sqrt{3}}{3} \qquad \mathrm{(C) \  } \frac{\sqrt{3}}{4} \qquad \mathrm{(D) \  } \frac{\sqrt{2}}{3} \qquad \mathrm{(E) \  }4-2\sqrt{3}$

Solution

Let $BN=x$ so that $AN=1-x$. From the Pythagorean Theorem on $\triangle NBC$, we get $CN=\sqrt{x^2+1}$, and from the Pythagorean Theorem on $\triangle AMN$, we get $MN=(1-x)\sqrt{2}$. Since $\triangle CMN$ is equilateral, we must have $\sqrt{x^2+1}=(1-x)\sqrt{2}\implies x^2+1=2x^2-4x+2\implies x^2-4x+1=0$. From the Pythagorean Theorem, we get $x=2-\sqrt{3}$, since we want the root that's less than $1$.

Therefore, $CN^2=x^2+1=(2-\sqrt{3})^2+1=8-4\sqrt{3}$. The area of an equilateral triangle with side length $x$ is equal to $\frac{x^2\sqrt{3}}{4}$, so the area of $\triangle CMN$ is $\frac{(8-4\sqrt{3})(\sqrt{3})}{4}=2\sqrt{3}-3, \boxed{\text{A}}$.

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png