Difference between revisions of "2012 AMC 8 Problems/Problem 5"

m
(Solution: That wasn't even a solution before.)
Line 44: Line 44:
  
 
==Solution==
 
==Solution==
There is a segment of length one on the segment with length <math> 6 </math>, which creates a segment of length <math> 5 </math>, which is also the value of <math> X </math>. Thus, the answer is <math> \boxed{\textbf{(E)}\ 5} </math>.
+
[[File:2012amc85.png]]
 +
The figure is the same height on both sides, so the sum of the lengths contributing to the height on the left side will equal the sum of the lengths contributing to the height on the left side.
 +
 
 +
<math>1 + 1 + 1 + 2 + X = 1 + 2 + 1 + 6\\
 +
5 + X = 10\\
 +
X = 5</math>
 +
 
 +
Thus, the answer is <math> \boxed{\textbf{(E)}\ 5} </math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2012|num-b=4|num-a=6}}
 
{{AMC8 box|year=2012|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 10:17, 23 November 2013

Problem

In the diagram, all angles are right angles and the lengths of the sides are given in centimeters. Note the diagram is not drawn to scale. What is , $X$ in centimeters?

[asy] pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R; A=(4,0); B=(7,0); C=(7,4); D=(8,4); E=(8,5); F=(10,5); G=(10,7); H=(7,7); I=(7,8); J=(5,8); K=(5,7); L=(4,7); M=(4,6); N=(0,6); O=(0,5); P=(2,5); Q=(2,3); R=(4,3); draw(A--B--C--D--E--F--G--H--I--J--K--L--M--N--O--P--Q--R--cycle); label("$X$",(3.4,1.5)); label("6",(7.6,1.5)); label("1",(7.6,3.5)); label("1",(8.4,4.6)); label("2",(9.4,4.6)); label("2",(10.4,6)); label("3",(8.4,7.4)); label("1",(7.5,7.8)); label("2",(6,8.5)); label("1",(4.7,7.8)); label("1",(4.3,7.5)); label("1",(3.5,6.5)); label("4",(1.8,6.5)); label("1",(-0.5,5.5)); label("2",(0.8,4.5)); label("2",(1.5,3.8)); label("2",(2.8,2.6));[/asy]

$\textbf{(A)}\hspace{.05in}1\qquad\textbf{(B)}\hspace{.05in}2\qquad\textbf{(C)}\hspace{.05in}3\qquad\textbf{(D)}\hspace{.05in}4\qquad\textbf{(E)}\hspace{.05in}5$

Solution

2012amc85.png The figure is the same height on both sides, so the sum of the lengths contributing to the height on the left side will equal the sum of the lengths contributing to the height on the left side.

$1 + 1 + 1 + 2 + X = 1 + 2 + 1 + 6\\ 5 + X = 10\\ X = 5$

Thus, the answer is $\boxed{\textbf{(E)}\ 5}$.

See Also

2012 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png