Difference between revisions of "2014 AIME I Problems/Problem 15"
(→Solution) |
(→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | First we note that <math>\triangle DEF</math> is an isosceles right triangle with hypotenuse <math>DE</math> the same as the diameter of <math>\omega</math>. We also note that <math>\triangle DGE \sim \triangle ABC</math> since <math>\angle EGD</math> is a right angle and the ratios of the sides are <math>3:4:5</math>. | + | First we note that <math>\triangle DEF</math> is an isosceles right triangle with hypotenuse <math>\overline{DE}</math> the same as the diameter of <math>\omega</math>. We also note that <math>\triangle DGE \sim \triangle ABC</math> since <math>\angle EGD</math> is a right angle and the ratios of the sides are <math>3:4:5</math>. |
− | From congruent arc intersections, we know that <math>\angle GED \cong \angle GBC</math>, and that from similar triangles <math>\angle GED</math> is also congruent to <math>\angle GCB</math>. Thus, <math>\triangle BGC</math> is an isosceles triangle with <math>BG = GC</math>, so <math>G</math> is the midpoint of <math>AC</math> and <math>AG | + | From congruent arc intersections, we know that <math>\angle GED \cong \angle GBC</math>, and that from similar triangles <math>\angle GED</math> is also congruent to <math>\angle GCB</math>. Thus, <math>\triangle BGC</math> is an isosceles triangle with <math>BG = GC</math>, so <math>G</math> is the midpoint of <math>\overline{AC}</math> and <math>AG = GC = 5/2</math>. Similarly, we can find from angle chasing that <math>\overline{BF}</math> is the angle bisector of <math>\angle B</math>. From the angle bisector theorem, we have <math>\frac{AF}{AB} = \frac{CF}{CB}</math>, so <math>AF = 15/7</math> and <math>CF = 20/7</math>. |
Lastly, we apply power of a point from points <math>A</math> and <math>C</math> with respect to <math>\omega</math> and have <math>AE \times AB=AF \times AG</math> and <math>CD \times CB=CG \times CF</math>, so we can compute that <math>EB = \frac{17}{14}</math> and <math>DB = \frac{31}{14}</math>. From the Pythagorean Theorem, we result in <math>DE = \frac{25 \sqrt{2}}{14}</math>, so <math>a+b+c=25+2+14= \boxed{041}</math> | Lastly, we apply power of a point from points <math>A</math> and <math>C</math> with respect to <math>\omega</math> and have <math>AE \times AB=AF \times AG</math> and <math>CD \times CB=CG \times CF</math>, so we can compute that <math>EB = \frac{17}{14}</math> and <math>DB = \frac{31}{14}</math>. From the Pythagorean Theorem, we result in <math>DE = \frac{25 \sqrt{2}}{14}</math>, so <math>a+b+c=25+2+14= \boxed{041}</math> |
Revision as of 01:09, 18 March 2014
Problem 15
In , , , and . Circle intersects at and , at and , and at and . Given that and , length , where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. Find .
Solution
First we note that is an isosceles right triangle with hypotenuse the same as the diameter of . We also note that since is a right angle and the ratios of the sides are .
From congruent arc intersections, we know that , and that from similar triangles is also congruent to . Thus, is an isosceles triangle with , so is the midpoint of and . Similarly, we can find from angle chasing that is the angle bisector of . From the angle bisector theorem, we have , so and .
Lastly, we apply power of a point from points and with respect to and have and , so we can compute that and . From the Pythagorean Theorem, we result in , so
See also
2014 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.