Difference between revisions of "1958 AHSME Problems/Problem 49"

(wrote solution)
 
m (See also)
Line 22: Line 22:
 
==See also==
 
==See also==
  
{{AHSME box|year=1958|num-b=48|num-a=50}}
+
{{AHSME 50p box|year=1958|num-b=48|num-a=50}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 05:31, 3 October 2014

Problem

In the expansion of $(a \plus{} b)^n$ (Error compiling LaTeX. Unknown error_msg) there are $n \plus{} 1$ (Error compiling LaTeX. Unknown error_msg) dissimilar terms. The number of dissimilar terms in the expansion of $(a \plus{} b \plus{} c)^{10}$ (Error compiling LaTeX. Unknown error_msg) is:

$\textbf{(A)}\ 11\qquad  \textbf{(B)}\ 33\qquad  \textbf{(C)}\ 55\qquad  \textbf{(D)}\ 66\qquad  \textbf{(E)}\ 132$

Solution

Expand the binomial $((a+b)+c)^n$ with the binomial theorem. We have:

\[\sum\limits_{k=0}^{10} \binom{10}{k} (a+b)^k c^{10-k}\]

So for each iteration of the summation operator, we add k+1 dissimilar terms. Therefore our answer is:

\[\sum\limits_{k=0}^{10} k+1 = \frac{11(1+11)}{2} = 66 \to \boxed{\textbf{D}}\]


See also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 48
Followed by
Problem 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png