Difference between revisions of "2005 AMC 10A Problems/Problem 16"

(See Also)
m (See Also)
Line 17: Line 17:
 
==See Also==
 
==See Also==
  
{{AMC10 box|year=2005|ab=A|num-b=22|num-a=24}}
+
{{AMC10 box|year=2005|ab=A|num-b=15|num-a=17}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Area Ratio Problems]]
 
[[Category:Area Ratio Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:49, 26 November 2015

Problem

The sum of the digits of a two-digit number is subtracted from the number. The units digit of the result is $6$. How many two-digit numbers have this property?

$\mathrm{(A) \ } 5\qquad \mathrm{(B) \ } 7\qquad \mathrm{(C) \ } 9\qquad \mathrm{(D) \ } 10\qquad \mathrm{(E) \ } 19$

Solution

Let the number be $10a+b$ where $a$ and $b$ are the tens and units digits of the number.

So $(10a+b)-(a+b)=9a$ must have a units digit of $6$

This is only possible if $9a=36$, so $a=4$ is the only way this can be true.

So the numbers that have this property are $40$, $41$, $42$, $43$, $44$, $45$, $46$, $47$, $48$, $49$.

Therefore the answer is $10\Rightarrow D$

See Also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png