Difference between revisions of "2014 AIME I Problems/Problem 15"
(→Solution) |
(→Solution) |
||
Line 40: | Line 40: | ||
Also: <math>FG=\frac{20}{7}-\frac{5}{2}=\frac{5}{2}-\frac{15}{7}=\frac{5}{14}</math>. We can also use Ptolemy's Theorem on quadrilateral <math>DEFG</math> to figure what <math>FG</math> is in terms of <math>d</math>: | Also: <math>FG=\frac{20}{7}-\frac{5}{2}=\frac{5}{2}-\frac{15}{7}=\frac{5}{14}</math>. We can also use Ptolemy's Theorem on quadrilateral <math>DEFG</math> to figure what <math>FG</math> is in terms of <math>d</math>: | ||
− | <cmath> | + | <cmath>DE\cdot FG+DG\cdot EF=DF\cdot EG</cmath> |
− | <cmath>\frac{3d}{5}\cdot \frac{d\sqrt{2}} | + | <cmath>d\cdot FG+\frac{3d}{5}\cdot \frac{d}{\sqrt{2}}=\frac{4d}{5}\cdot \frac{d}{\sqrt{2}}</cmath> |
− | <cmath>\frac{3d\sqrt{2}} | + | <cmath>d\cdot FG+\frac{3d}{5\sqrt{2}}=\frac{4d}{5\sqrt{2}}\implies FG=\frac{d}{5\sqrt{2}}</cmath> |
− | Thus <math>\frac{d\sqrt{2} | + | Thus <math>\frac{d}{5\sqrt{2}}=\frac{5}{14}\rightarrow d=5\sqrt{2}\cdot\frac{5}{14}=\frac{25\sqrt{2}}{14}</math>. <math>a+b+c=25+2+14= \boxed{041}</math> |
== See also == | == See also == | ||
{{AIME box|year=2014|n=I|num-b=14|after=Last Question}} | {{AIME box|year=2014|n=I|num-b=14|after=Last Question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:13, 14 February 2016
Problem 15
In , , , and . Circle intersects at and , at and , and at and . Given that and , length , where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. Find .
Solution
First we note that is an isosceles right triangle with hypotenuse the same as the diameter of . We also note that since is a right angle and the ratios of the sides are .
From congruent arc intersections, we know that , and that from similar triangles is also congruent to . Thus, is an isosceles triangle with , so is the midpoint of and . Similarly, we can find from angle chasing that . Therefore, is the angle bisector of . From the angle bisector theorem, we have , so and .
Lastly, we apply power of a point from points and with respect to and have and , so we can compute that and . From the Pythagorean Theorem, we result in , so
Also: . We can also use Ptolemy's Theorem on quadrilateral to figure what is in terms of :
Thus .
See also
2014 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.