Difference between revisions of "2005 AMC 10A Problems/Problem 25"
(→See also) |
Mathwiz0803 (talk | contribs) (→Solution) |
||
Line 4: | Line 4: | ||
<math> \mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1 </math> | <math> \mathrm{(A) \ } \frac{266}{1521}\qquad \mathrm{(B) \ } \frac{19}{75}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{19}{56}\qquad \mathrm{(E) \ } 1 </math> | ||
− | ==Solution== | + | ==Solution (no trig)== |
+ | We have that | ||
+ | <cmath>\frac{[ADE]}{[ABC]} = \frac{AD}{AB} \cdot \frac{AE}{AC} = \frac{19}{25} \cdot \frac{14}{42} = \frac{19}{75}.</cmath> | ||
+ | |||
+ | [asy] | ||
+ | unitsize(0.15 cm); | ||
+ | |||
+ | pair A, B, C, D, E; | ||
+ | |||
+ | A = (191/39,28*sqrt(1166)/39); | ||
+ | B = (0,0); | ||
+ | C = (39,0); | ||
+ | D = (6*A + 19*B)/25; | ||
+ | E = (28*A + 14*C)/42; | ||
+ | |||
+ | draw(A--B--C--cycle); | ||
+ | draw(D--E); | ||
+ | |||
+ | label("<math>A</math>", A, N); | ||
+ | label("<math>B</math>", B, SW); | ||
+ | label("<math>C</math>", C, SE); | ||
+ | label("<math>D</math>", D, W); | ||
+ | label("<math>E</math>", E, NE); | ||
+ | label("<math>19</math>", (A + D)/2, W); | ||
+ | label("<math>6</math>", (B + D)/2, W); | ||
+ | label("<math>14</math>", (A + E)/2, NE); | ||
+ | label("<math>28</math>", (C + E)/2, NE); | ||
+ | [/asy] | ||
+ | |||
+ | But <math>[BCED] = [ABC] - [ADE]</math>, so | ||
+ | \begin{align*} | ||
+ | \frac{[ADE]}{[BCED]} &= \frac{[ADE]}{[ABC] - [ADE]} \\ | ||
+ | &= \frac{1}{[ABC]/[ADE] - 1} \\ | ||
+ | &= \frac{1}{75/19 - 1} \\ | ||
+ | &= \boxed{\frac{19}{56}}. | ||
+ | \end{align*} | ||
+ | The answer is therefore <math>D</math>. | ||
+ | |||
+ | ==Solution (trig)== | ||
The [[area]] of a [[triangle]] is <math>\frac{1}{2}bc\sin A</math>. | The [[area]] of a [[triangle]] is <math>\frac{1}{2}bc\sin A</math>. | ||
Revision as of 19:52, 3 November 2016
Problem
In we have , , and . Points and are on and respectively, with and . What is the ratio of the area of triangle to the area of the quadrilateral ?
Solution (no trig)
We have that
[asy] unitsize(0.15 cm);
pair A, B, C, D, E;
A = (191/39,28*sqrt(1166)/39); B = (0,0); C = (39,0); D = (6*A + 19*B)/25; E = (28*A + 14*C)/42;
draw(A--B--C--cycle); draw(D--E);
label("", A, N); label("", B, SW); label("", C, SE); label("", D, W); label("", E, NE); label("", (A + D)/2, W); label("", (B + D)/2, W); label("", (A + E)/2, NE); label("", (C + E)/2, NE); [/asy]
But , so \begin{align*} \frac{[ADE]}{[BCED]} &= \frac{[ADE]}{[ABC] - [ADE]} \\ &= \frac{1}{[ABC]/[ADE] - 1} \\ &= \frac{1}{75/19 - 1} \\ &= \boxed{\frac{19}{56}}. \end{align*} The answer is therefore .
Solution (trig)
Using this formula:
Since the area of is equal to the area of minus the area of ,
.
Therefore, the desired ratio is
Note: was not used in this problem
See also
2005 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.