Difference between revisions of "2017 AIME I Problems/Problem 9"
m (add the box at the bottom) |
m (→Solution) |
||
Line 7: | Line 7: | ||
Therefore, <math>a_n</math> is divisible by 99 if and only if <math>\frac{1}{2}(n+10)(n-9)</math> is divisible by 99, so <math>(n+10)(n-9)</math> needs to be divisible by 9 and 11. Assume that <math>n+10</math> is a multiple of 11. Writing out a few terms, <math>n=12, 23, 34, 45</math>, we see that <math>n=45</math> is the smallest <math>n</math> that works in this case. Next, assume that <math>n-9</math> is a multiple of 11. Writing out a few terms, <math>n=20, 31, 42, 53</math>, we see that <math>n=53</math> is the smallest <math>n</math> that works in this case. The smallest <math>n</math> is <math>\boxed{45}</math>. | Therefore, <math>a_n</math> is divisible by 99 if and only if <math>\frac{1}{2}(n+10)(n-9)</math> is divisible by 99, so <math>(n+10)(n-9)</math> needs to be divisible by 9 and 11. Assume that <math>n+10</math> is a multiple of 11. Writing out a few terms, <math>n=12, 23, 34, 45</math>, we see that <math>n=45</math> is the smallest <math>n</math> that works in this case. Next, assume that <math>n-9</math> is a multiple of 11. Writing out a few terms, <math>n=20, 31, 42, 53</math>, we see that <math>n=53</math> is the smallest <math>n</math> that works in this case. The smallest <math>n</math> is <math>\boxed{45}</math>. | ||
+ | ==See also== | ||
{{AIME box|year=2017|n=I|num-b=8|num-a=10}} | {{AIME box|year=2017|n=I|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 17:04, 8 March 2017
Problem 9
Let , and for each integer let . Find the least such that is a multiple of .
Solution
Writing out the recursive statement for and summing them gives Which simplifies to Therefore, is divisible by 99 if and only if is divisible by 99, so needs to be divisible by 9 and 11. Assume that is a multiple of 11. Writing out a few terms, , we see that is the smallest that works in this case. Next, assume that is a multiple of 11. Writing out a few terms, , we see that is the smallest that works in this case. The smallest is .
See also
2017 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.