Difference between revisions of "2013 AMC 12B Problems/Problem 19"
(→Solution 3) |
|||
Line 9: | Line 9: | ||
==Solution 1== | ==Solution 1== | ||
− | Since <math>\angle{AFB}=\angle{ADB}=90^{\circ}</math>, quadrilateral <math>ABDF</math> is cyclic. It follows that <math>\angle{ADE}=\angle{ABF}</math>. In addition, since <math>\angle{AFB}=\angle{AED}=90</math>, triangles <math>ABF</math> and <math>ADE</math> are similar. It follows that <math>AF=(13)(\frac{4}{5}), BF=(13)(\frac{3}{5})</math>. By [[Ptolemy's Theorem|Ptolemy's Theorem]], we have <math>13DF+(5)(13)(\frac{4}{5})=(12)(13)(\frac{3}{5})</math>. Cancelling <math>13</math>, the rest is easy. We obtain <math>DF=\frac{16}{5} | + | Since <math>\angle{AFB}=\angle{ADB}=90^{\circ}</math>, quadrilateral <math>ABDF</math> is cyclic. It follows that <math>\angle{ADE}=\angle{ABF}</math>. In addition, since <math>\angle{AFB}=\angle{AED}=90</math>, triangles <math>ABF</math> and <math>ADE</math> are similar. It follows that <math>AF=(13)(\frac{4}{5}), BF=(13)(\frac{3}{5})</math>. By [[Ptolemy's Theorem|Ptolemy's Theorem]], we have <math>13DF+(5)(13)(\frac{4}{5})=(12)(13)(\frac{3}{5})</math>. Cancelling <math>13</math>, the rest is easy. We obtain <math>DF=\frac{16}{5}</math>, so our answer is <math>16+5=\boxed{21\,\textbf{(B)}}</math>. |
==Solution 2== | ==Solution 2== | ||
− | Using the similar triangles in triangle <math>ADC</math> gives <math>AE = \frac{48}{5}</math> and <math>DE = \frac{36}{5}</math>. Quadrilateral <math>ABDF</math> is cyclic, implying that <math>\angle{B} + \angle{DFA}</math> = 180°. Therefore, <math>\angle{B} = \angle{EFA}</math>, and triangles <math>AEF</math> and <math>ADB </math> are similar. Solving the resulting proportion gives <math>EF = 4</math>. Therefore, <math>DF = ED - EF = \frac{16}{5} | + | Using the similar triangles in triangle <math>ADC</math> gives <math>AE = \frac{48}{5}</math> and <math>DE = \frac{36}{5}</math>. Quadrilateral <math>ABDF</math> is cyclic, implying that <math>\angle{B} + \angle{DFA}</math> = 180°. Therefore, <math>\angle{B} = \angle{EFA}</math>, and triangles <math>AEF</math> and <math>ADB </math> are similar. Solving the resulting proportion gives <math>EF = 4</math>. Therefore, <math>DF = ED - EF = \frac{16}{5}</math> and our answer is <math>\boxed{\textbf{(B)}}</math>. |
==Solution 3== | ==Solution 3== | ||
− | If we draw a diagram as given, but then add <math>DG</math> as an altitude to use the Pythagorean theorem, we end up with similar triangles <math>\triangle{DFG}</math> and <math>\triangle{DCE}</math>. Thus, <math>FG | + | If we draw a diagram as given, but then add <math>DG</math> as an altitude to use the Pythagorean theorem, we end up with similar triangles <math>\triangle{DFG}</math> and <math>\triangle{DCE}</math>. Thus, <math>FG=\tfrac35x</math> and <math>DG=\tfrac45x</math>. Using Pythagorean theorem, we now get <cmath>BF = \sqrt{\left(\frac45x+ 5\right)^2 + \left(\frac35x\right)^2}</cmath> and <math>AF</math> can be found out noting that <math>AE</math> is just <math>\tfrac{48}5</math> through area times height (since <math>12\cdot 9 = 15 \cdot \tfrac{36}5</math>, similar triangles gives <math>AE = \tfrac{48}5</math>), and that <math>EF</math> is just <math>\tfrac{36}5 - x</math>. From there, <cmath>AF = \sqrt{\left(\frac{36}5 - x\right)^2 + \left(\frac{48}5\right)^2}.</cmath> Now, <math>BF^2 + AF^2 = 169</math>, and squaring and adding both sides and subtracting a 169 from both sides gives <math>2x^2 - \tfrac{32}5x = 0</math>, so <math>x = \tfrac{16}5</math>. Thus, the answer is <math>\boxed{\textbf{(B)}}</math>. |
− | |||
− | < | ||
− | |||
− | and <math>AF</math> can be found out noting that <math>AE</math> is just 48/ | ||
− | |||
− | From there, < | ||
− | |||
− | Now, <math>BF^2 + AF^2 = 169</math>, and squaring and adding both sides and subtracting a 169 from both sides gives | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Thus, the answer is <math>{\ | ||
− | |||
− | |||
== See also == | == See also == |
Revision as of 16:04, 25 January 2018
- The following problem is from both the 2013 AMC 12B #19 and 2013 AMC 10B #23, so both problems redirect to this page.
Problem
In triangle , , , and . Distinct points , , and lie on segments , , and , respectively, such that , , and . The length of segment can be written as , where and are relatively prime positive integers. What is ?
Solution 1
Since , quadrilateral is cyclic. It follows that . In addition, since , triangles and are similar. It follows that . By Ptolemy's Theorem, we have . Cancelling , the rest is easy. We obtain , so our answer is .
Solution 2
Using the similar triangles in triangle gives and . Quadrilateral is cyclic, implying that = 180°. Therefore, , and triangles and are similar. Solving the resulting proportion gives . Therefore, and our answer is .
Solution 3
If we draw a diagram as given, but then add as an altitude to use the Pythagorean theorem, we end up with similar triangles and . Thus, and . Using Pythagorean theorem, we now get and can be found out noting that is just through area times height (since , similar triangles gives ), and that is just . From there, Now, , and squaring and adding both sides and subtracting a 169 from both sides gives , so . Thus, the answer is .
See also
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2013 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.