Difference between revisions of "2011 AMC 10B Problems/Problem 20"
(→Solution) |
Abhinav2k3 (talk | contribs) (→Solution) |
||
Line 19: | Line 19: | ||
pair A=(4,0), B=(2,2sqrt(3)), C=(-2,2sqrt(3)), D=(0,0), E=(B+C)/2, F=(B+C+D)/3, G=(A+C)/2, H=(A+B+D)/3, I=(A+B)/2; | pair A=(4,0), B=(2,2sqrt(3)), C=(-2,2sqrt(3)), D=(0,0), E=(B+C)/2, F=(B+C+D)/3, G=(A+C)/2, H=(A+B+D)/3, I=(A+B)/2; | ||
fill((0,2sqrt(3))--B--(3,sqrt(3))--(2,(2sqrt(3))/3)--(0,(4sqrt(3))/3)--cycle,gray); | fill((0,2sqrt(3))--B--(3,sqrt(3))--(2,(2sqrt(3))/3)--(0,(4sqrt(3))/3)--cycle,gray); | ||
− | draw(A | + | draw(A-B--C--D--cycle); |
draw(D--(0,2sqrt(3))); draw(D--(3,sqrt(3))); draw(A--C); draw(F--B--H); draw(B--G); | draw(D--(0,2sqrt(3))); draw(D--(3,sqrt(3))); draw(A--C); draw(F--B--H); draw(B--G); | ||
Revision as of 19:18, 13 February 2018
- The following problem is from both the 2011 AMC 12B #16 and 2011 AMC 10B #20, so both problems redirect to this page.
Problem
Rhombus has side length and °. Region consists of all points inside the rhombus that are closer to vertex than any of the other three vertices. What is the area of ?
Solution
Suppose that is a point in the rhombus and let be the perpendicular bisector of . Then if and only if is on the same side of as . The line divides the plane into two half-planes; let be the half-plane containing . Let us define similarly and . Then is equal to . The region turns out to be an irregular pentagon. We can make it easier to find the area of this region by dividing it into four triangles:
Since and are equilateral, contains , contains and , and contains . Then with and so . Multiply this by 4 and it turns out that the pentagon has area .
See Also
2011 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2011 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.