Difference between revisions of "1958 AHSME Problems/Problem 41"

(Solution)
(Solution)
 
Line 15: Line 15:
 
By Vieta's, <math>r + s = -\frac{B}{A}</math>, <math>rs = \frac{C}{A}</math>, and <math>r^2 + s^2 = -p</math>. Note that <math>(r+s)^2 = r^2 + s^2 + 2rs</math>.
 
By Vieta's, <math>r + s = -\frac{B}{A}</math>, <math>rs = \frac{C}{A}</math>, and <math>r^2 + s^2 = -p</math>. Note that <math>(r+s)^2 = r^2 + s^2 + 2rs</math>.
  
Therefore, <math>(r + s)^2 - 2rs = r^2 + s^2</math>, or <math>-\left(\frac{B}{A}\right)^2 - 2\frac{C}{A} = -p</math>.
+
Therefore, <math>(r + s)^2 - 2rs = r^2 + s^2</math>, or <math>-\left(\frac{B}{A}\right)^2 - \frac{2C}{A} = -p</math>.
  
 
Simplifying, <math>\frac{B^2 - 2CA}{A^2} = -p</math>.  
 
Simplifying, <math>\frac{B^2 - 2CA}{A^2} = -p</math>.  

Latest revision as of 14:10, 22 February 2018

Problem

The roots of $Ax^2 + Bx + C = 0$ are $r$ and $s$. For the roots of $x^2+px +q =0$

to be $r^2$ and $s^2$, $p$ must equal:

$\textbf{(A)}\ \frac{B^2 - 4AC}{A^2}\qquad  \textbf{(B)}\ \frac{B^2 - 2AC}{A^2}\qquad  \textbf{(C)}\ \frac{2AC - B^2}{A^2}\qquad \\ \textbf{(D)}\ B^2 - 2C\qquad  \textbf{(E)}\ 2C - B^2$

Solution

By Vieta's, $r + s = -\frac{B}{A}$, $rs = \frac{C}{A}$, and $r^2 + s^2 = -p$. Note that $(r+s)^2 = r^2 + s^2 + 2rs$.

Therefore, $(r + s)^2 - 2rs = r^2 + s^2$, or $-\left(\frac{B}{A}\right)^2 - \frac{2C}{A} = -p$.

Simplifying, $\frac{B^2 - 2CA}{A^2} = -p$.

Finally, multiply both sides by $-1$ to get $p = \frac{2CA - B^2}{A^2}$, making the answer $\fbox{C}$.

See Also

1958 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 40
Followed by
Problem 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png