Difference between revisions of "1961 AHSME Problems/Problem 2"

(Solution to Problem 2)
 
Line 1: Line 1:
An automobile travels a/6 ''feet'' in ''r seconds''. If this rate is maintained for 3 minutes, how many ''yards'' does it travel in the 3 ''minutes''?
+
== Problem ==
 +
 
 +
An automobile travels <math>a/6</math> feet in <math>r</math> seconds. If this rate is maintained for <math>3</math> minutes, how many yards does it travel in <math>3</math> minutes?
 +
 
 +
<math>\textbf{(A)}\ \frac{a}{1080r}\qquad
 +
\textbf{(B)}\ \frac{30r}{a}\qquad
 +
\textbf{(C)}\ \frac{30a}{r}\qquad
 +
\textbf{(D)}\ \frac{10r}{a}\qquad
 +
\textbf{(E)}\ \frac{10a}{r}    </math>
 +
 
 +
==Solution==
 +
Use dimensional analysis.
 +
<cmath>\frac{a/6 \text{ feet}}{r \text{ seconds}} \cdot \frac{1 \text{ yard}}{3 \text{ feet}} \cdot \frac{60 \text{ seconds}}{1 \text{ minute}} \cdot 3 \text{ minutes}</cmath>
 +
<cmath>\frac{10a}{r} \text{ yards}</cmath>
 +
The answer is <math>\boxed{\textbf{(E)}}</math>.
 +
 
 +
==See Also==
 +
{{AHSME 40p box|year=1961|num-b=1|num-a=3}}
 +
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 18:30, 17 May 2018

Problem

An automobile travels $a/6$ feet in $r$ seconds. If this rate is maintained for $3$ minutes, how many yards does it travel in $3$ minutes?

$\textbf{(A)}\ \frac{a}{1080r}\qquad \textbf{(B)}\ \frac{30r}{a}\qquad \textbf{(C)}\ \frac{30a}{r}\qquad \textbf{(D)}\ \frac{10r}{a}\qquad \textbf{(E)}\ \frac{10a}{r}$

Solution

Use dimensional analysis. \[\frac{a/6 \text{ feet}}{r \text{ seconds}} \cdot \frac{1 \text{ yard}}{3 \text{ feet}} \cdot \frac{60 \text{ seconds}}{1 \text{ minute}} \cdot 3 \text{ minutes}\] \[\frac{10a}{r} \text{ yards}\] The answer is $\boxed{\textbf{(E)}}$.

See Also

1961 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png