1986 AIME Problems/Problem 11

Revision as of 15:51, 9 June 2023 by Fidgetboss 4000 (talk | contribs) (added my solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The polynomial $1-x+x^2-x^3+\cdots+x^{16}-x^{17}$ may be written in the form $a_0+a_1y+a_2y^2+\cdots +a_{16}y^{16}+a_{17}y^{17}$, where $y=x+1$ and the $a_i$'s are constants. Find the value of $a_2$.

Solution

Solution 1

Using the geometric series formula, $1 - x + x^2 + \cdots - x^{17} = \frac {1 - x^{18}}{1 + x} = \frac {1-x^{18}}{y}$. Since $x = y - 1$, this becomes $\frac {1-(y - 1)^{18}}{y}$. We want $a_2$, which is the coefficient of the $y^3$ term in $-(y - 1)^{18}$ (because the $y$ in the denominator reduces the degrees in the numerator by $1$). By the Binomial Theorem, this is $(-1) \cdot (-1)^{15}{18 \choose 3} = \boxed{816}$.

Solution 2

Again, notice $x = y - 1$. So

\begin{align*}1 - x + x^2 + \cdots - x^{17} & = 1 - (y - 1) + (y - 1)^2 - (y - 1)^3 + \cdots - (y - 1)^{17} \\ & = 1 + (1 - y) + (1 - y)^2 + (1 - y)^3 \cdots + (1 - y)^{17}\end{align*}.

We want the coefficient of the $y^2$ term of each power of each binomial, which by the binomial theorem is ${2\choose 2} + {3\choose 2} + \cdots + {17\choose 2}$. The Hockey Stick Identity tells us that this quantity is equal to ${18\choose 3} = \boxed{816}$.

Solution 3

Again, notice $x=y-1$. Substituting $y-1$ for $x$ in $f(x)$ gives: \begin{align*}1 - x + x^2 + \cdots - x^{17} & = 1 - (y - 1) + (y - 1)^2 - (y - 1)^3 + \cdots - (y - 1)^{17} \\ & = 1 + (1 - y) + (1 - y)^2 + (1 - y)^3 \cdots + (1 - y)^{17}\end{align*}. From binomial theorem, the coefficient of the $y^2$ term is ${2\choose 0} + {3\choose 1} + \cdots + {17\choose 15}$. This is actually the sum of the first 16 triangular numbers, which evaluates to $\frac{(16)(17)(18)}{6} = \boxed{816}$.

Solution 4(calculus)

Let $f(x)=1-x+x^2-x^3+\cdots+x^{16}-x^{17}$ and $g(y)=a_0+a_1y+a_2y^2+\cdots +a_{16}y^{16}+a_{17}y^{17}$.

Then, since $f(x)=g(y)$, \[\frac{d^2f}{dx^2}=\frac{d^2g}{dy^2}\] $\frac{d^2f}{dx^2} = 2\cdot 1 - 3\cdot 2x+\cdots-17\cdot 16x^{15}$ by the power rule.

Similarly, $\frac{d^2g}{dy^2} = a_2(2\cdot 1) + a_3(3\cdot 2y)+\cdots+a_{17}(17\cdot 16y^{15})$

Now, notice that if $x = -1$, then $y = 0$, so $f^{''}(-1) = g^{''}(0)$

$g^{''}(0)= 2a_2$, and $f^{''}(-1) = 2\cdot 1 + 3\cdot 2 +\cdots + 16\cdot 17$.

Now, we can use the hockey stick theorem to see that $2\cdot 1 + 3\cdot 2 +\cdots + 16\cdot 17 = 2\binom{18}{3}$

Thus, $2a_2 = 2\binom{18}{3}\rightarrow a_2 = \binom{18}{3}=\boxed{816}$

-AOPS81619

Solution 5 (Linear Algebra)

Let $V$ be the vector space of polynomials of degree $\leq 17,$ and let $B = \{1, x, x^2, ..., x^{17} \}$ and $C = \{1, (x+1), (x+1)^2, ..., (x+1)^{17} \}$ be two bases for $V$. Let $\vec{v} \in V$ be the polynomial given in the problem, and it is easy to see that $[ \vec{v} ]_B = \langle 1, -1, 1, -1, ... , 1, -1 \rangle.$

Note that the transformation matrix from $C$ to $B$ can be easily found to be $P_{C \to B} = [ [\vec{c_1}]_B [\vec{c_2}]_B ... [\vec{c_3}]_B ] = \begin{bmatrix} \tbinom{0}{0} & \tbinom{1}{0} & \tbinom{2}{0} & \cdots & \tbinom{17}{0} \\ 0 & \tbinom{1}{1} & \tbinom{2}{1} & \cdots & \tbinom{17}{1} \\ 0 & 0 & \tbinom{2}{2} & \cdots & \tbinom{17}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \tbinom{17}{17} \end{bmatrix} .$

I claim that $P_{B \to C} = \begin{bmatrix} \tbinom{0}{0} & -\tbinom{1}{0} & \tbinom{2}{0} & \cdots & -\tbinom{17}{0} \\ 0 & \tbinom{1}{1} & -\tbinom{2}{1} & \cdots & \tbinom{17}{1} \\ 0 & 0 & \tbinom{2}{2} & \cdots & -\tbinom{17}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \tbinom{17}{17} \end{bmatrix} ,$ where the term $\dbinom{n}{k}$ is negated if $n+k$ is odd.

One can prove that the $i$th row of $P_{C \to B}$ dotted with the $j$th column of $P_{B \to C}$ is $\delta_{i, j}$ by using combinatorial identities, which is left as an exercise for the reader. Thus, since the two matrices multiply to form $\mathbb{I}_{18},$ we have proved that $P_{B \to C} = \begin{bmatrix} \tbinom{0}{0} & -\tbinom{1}{0} & \tbinom{2}{0} & \cdots & -\tbinom{17}{0} \\ 0 & \tbinom{1}{1} & -\tbinom{2}{1} & \cdots & \tbinom{17}{1} \\ 0 & 0 & \tbinom{2}{2} & \cdots & -\tbinom{17}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \tbinom{17}{17} \end{bmatrix} .$

To find the coordinates of $\vec{v}$ under basis $C,$ we compute the product $[ \vec{v} ]_C = P_{B \to C} [\vec{v} ]_B = \begin{bmatrix} \tbinom{0}{0} & -\tbinom{1}{0} & \tbinom{2}{0} & \cdots & -\tbinom{17}{0} \\ 0 & \tbinom{1}{1} & -\tbinom{2}{1} & \cdots & \tbinom{17}{1} \\ 0 & 0 & \tbinom{2}{2} & \cdots & -\tbinom{17}{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \tbinom{17}{17} \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \\ \vdots \\ -1 \end{bmatrix} = \begin{bmatrix} \sum_{n=0}^{17} \tbinom{n}{0} \\ -\sum_{n=1}^{17} \tbinom{n}{1} \\  \sum_{n=2}^{17} \tbinom{n}{2} \\ \vdots \\  -\sum_{n=17}^{17} \tbinom{n}{17} \end{bmatrix} = \begin{bmatrix} \tbinom{18}{1} \\ - \tbinom{18}{2} \\ \tbinom{18}{3} \\ \vdots \\ -\tbinom{18}{18} \end{bmatrix},$ where the last equality was obtained via Hockey Stick Identity.

Thus, our answer is $a_2 =  [ [ \vec{v} ]_C ]_3 = \dbinom{18}{3} = \boxed{816}.$

-fidgetboss_4000

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png