2020 AMC 10B Problems/Problem 14

Revision as of 22:41, 14 September 2020 by Jbala (talk | contribs)
The following problem is from both the 2020 AMC 10B #14 and 2020 AMC 12B #11, so both problems redirect to this page.

Problem

As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length 2 so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region — inside the hexagon but outside all of the semicircles?

[asy] size(140); fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4)); fill(arc((2,0),1,180,0)--(2,0)--cycle,white); fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white); fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white); fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white); fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white); fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white); draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0)); draw(arc((2,0),1,180,0)--(2,0)--cycle); draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle); draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle); draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle); draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle); draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle); label("$2$",(3.5,3sqrt(3)/2),NE); [/asy]

$\textbf {(A) } 6\sqrt{3}-3\pi \qquad \textbf {(B) } \frac{9\sqrt{3}}{2} - 2\pi\ \qquad \textbf {(C) } \frac{3\sqrt{3}}{2} - \frac{\pi}{3} \qquad \textbf {(D) } 3\sqrt{3} - \pi \qquad \textbf {(E) } \frac{9\sqrt{3}}{2} - \pi$

Solution 1

[asy] real x=sqrt(3); real y=2sqrt(3); real z=3.5; real a=x/2; real b=0.5; real c=3a; pair A, B, C, D, E, F; A = (1,0); B = (3,0); C = (4,x); D = (3,y); E = (1,y); F = (0,x);  fill(A--B--C--D--E--F--A--cycle,grey); fill(arc((2,0),1,0,180)--cycle,white); fill(arc((2,y),1,180,360)--cycle,white); fill(arc((z,a),1,60,240)--cycle,white); fill(arc((b,a),1,300,480)--cycle,white); fill(arc((b,c),1,240,420)--cycle,white); fill(arc((z,c),1,120,300)--cycle,white); draw(A--B--C--D--E--F--A); draw(arc((z,c),1,120,300)); draw(arc((b,c),1,240,420)); draw(arc((b,a),1,300,480)); draw(arc((z,a),1,60,240)); draw(arc((2,y),1,180,360)); draw(arc((2,0),1,0,180)); label("2",(z,c),NE);  pair X,Y,Z; X = (1,0); Y = (2,0); Z = (1.5,a); pair d = 1.9*dir(7); dot(X); dot(Y); dot(Z); label("A",X,SW); label("B",Y,SE); label("C",Z,N); draw(X--Y--Z--A); label("1",(1.5,0),S); label("1",(1.75,a/2),dir(30)); draw(anglemark(Y,X,Z,8),blue); label("$60^\circ$",anglemark(Y,X,Z),d); [/asy]

Let point A be a vertex of the regular hexagon, let point B be the midpoint of the line connecting point A and a neighboring vertex, and let point C be the second intersection of the two semicircles that pass through point A. Then, $BC = 1$, since B is the center of the semicircle with radius 1 that C lies on, $AB = 1$, since B is the center of the semicircle with radius 1 that A lies on, and $\angle BAC = 60^\circ$, as a regular hexagon has angles of 120$^\circ$, and $\angle BAC$ is half of any angle in this hexagon. Now, using the sine law, $\frac{1}{\sin \angle ACB} = \frac{1}{\sin 60^\circ}$, so $\angle ACB = 60^\circ$. Since the angles in a triangle sum to 180$^\circ$, $\angle ABC$ is also 60$^\circ$. Therefore, $\triangle ABC$ is an equilateral triangle with side lengths of 1.

[asy] real x=sqrt(3); real y=2sqrt(3); real z=3.5; real a=x/2; real b=0.5; real c=3a; pair A, B, C, D, E, F; A = (1,0); B = (3,0); C = (4,x); D = (3,y); E = (1,y); F = (0,x);  fill(A--B--C--D--E--F--A--cycle,grey); fill(arc((2,0),1,0,180)--cycle,white); fill(arc((2,y),1,180,360)--cycle,white); fill(arc((z,a),1,60,240)--cycle,white); fill(arc((b,a),1,300,480)--cycle,white); fill(arc((b,c),1,240,420)--cycle,white); fill(arc((z,c),1,120,300)--cycle,white); draw(A--B--C--D--E--F--A); draw(arc((z,c),1,120,300)); draw(arc((b,c),1,240,420)); draw(arc((b,a),1,300,480)); draw(arc((z,a),1,60,240)); draw(arc((2,y),1,180,360)); draw(arc((2,0),1,0,180)); pair G,H,I,J,K; G = (2,0); H = (2.5,a); I = (1.5,a); J = (1,0); K = (3,0); pair d = 2.7*dir(78); dot(G); dot(H); dot(I); dot(J); dot(K); label("2",(z,c),NE); label("1",(1.5,0),S); label("1",(2.5,0),S); add(pathticks(G--J,1,0.5,0,3,red)); add(pathticks(I--J,1,0.5,0,3,red)); add(pathticks(G--I,1,0.5,0,3,red)); add(pathticks(G--H,1,0.5,0,3,red)); add(pathticks(G--K,1,0.5,0,3,red)); add(pathticks(K--H,1,0.5,0,3,red)); label("$60^\circ$",anglemark(H,G,I),d); draw(anglemark(H,G,I,8),blue); label("$60^\circ$",G,2*dir(146)); draw(anglemark(I,G,J,8),blue); label("$60^\circ$",G,2.8*dir(28)); draw(anglemark(K,G,H,8),blue); draw(G--J--I--G); draw(G--H--K--G); [/asy]

Since the area of a regular hexagon can be found with the formula $\frac{3\sqrt{3}s^2}{2}$, where $s$ is the side length of the hexagon, the area of this hexagon is $\frac{3\sqrt{3}(2^2)}{2} = 6\sqrt{3}$. Since the area of an equilateral triangle can be found with the formula $\frac{\sqrt{3}}{4}s^2$, where $s$ is the side length of the equilateral triangle, the area of an equilateral triangle with side lengths of 1 is $\frac{\sqrt{3}}{4}(1^2) = \frac{\sqrt{3}}{4}$. Since the area of a circle can be found with the formula $\pi r^2$, the area of a sixth of a circle with radius 1 is $\frac{\pi(1^2)}{6} = \frac{\pi}{6}$. In each sixth of the hexagon, there are two equilateral triangles colored white, each with an area of $\frac{\sqrt{3}}{4}$, and one sixth of a circle with radius 1 colored white, with an area of $\frac{\pi}{6}$. The rest of the sixth is colored gray. Therefore, the total area that is colored white in each sixth of the hexagon is $2(\frac{\sqrt{3}}{4}) + \frac{\pi}{6}$, which equals $\frac{\sqrt{3}}{2} + \frac{\pi}{6}$, and the total area colored white is $6(\frac{\sqrt{3}}{2} + \frac{\pi}{6})$, which equals $3\sqrt{3} + \pi$. Since the area colored gray equals the total area of the hexagon minus the area colored white, the area colored gray is $6\sqrt{3} - (3\sqrt{3} + \pi)$, which equals $\boxed{\textbf{(D) }3\sqrt{3} - \pi}$.

Solution 2

First, subdivide the hexagon into 24 equilateral triangles with side length 1: [asy] size(140); fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4)); fill(arc((2,0),1,180,0)--(2,0)--cycle,white); fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white); fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white); fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white); fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white); fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white); draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0)); draw(arc((2,0),1,180,0)--(2,0)--cycle); draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle); draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle); draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle); draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle); draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle); label("$2$",(3.5,3sqrt(3)/2),NE);  draw((1,0)--(3,2sqrt(3))); draw((3,0)--(1,2sqrt(3))); draw((4,sqrt(3))--(0,sqrt(3))); draw((2,0)--(3.5,3sqrt(3)/2)); draw((3.5,sqrt(3)/2)--(2,2sqrt(3))); draw((3.5,3sqrt(3)/2)--(0.5,3sqrt(3)/2)); draw((2,2sqrt(3))--(0.5,sqrt(3)/2)); draw((2,0)--(0.5,3sqrt(3)/2)); draw((3.5,sqrt(3)/2)--(0.5,sqrt(3)/2)); [/asy] Now note that the entire shaded region is just 6 times this part: [asy] size(100); fill((2,sqrt(3))--(2.5,3sqrt(3)/2)--(2,2sqrt(3))--(1.5,3sqrt(3)/2)--cycle,gray(0.4)); fill(arc((2,2sqrt(3)),1,240,300)--(2,2sqrt(3))--cycle,white);  draw(arc((2,2sqrt(3)),1,240,300)--(2,2sqrt(3))--cycle); label("$1$",(2.25,7sqrt(3)/4),NE);  draw((2,sqrt(3))--(2.5,3sqrt(3)/2)--(2,2sqrt(3))--(1.5,3sqrt(3)/2)--cycle); draw((2.5,3sqrt(3)/2)--(1.5,3sqrt(3)/2)); [/asy] The entire rhombus is just 2 equilatrial triangles with side lengths of 1, so it has an area of: \[2\cdot\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{2}\] The arc that is not included has an area of: \[\frac16 \cdot\pi \cdot1^2 = \frac{\pi}{6}\] Hence, the area of the shaded region in that section is \[\frac{\sqrt{3}}{2}-\frac{\pi}{6}\] For a final area of: \[6\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)=3\sqrt{3}-\pi\Rightarrow \boxed{\mathrm{(D)}}\] ~N828335

Video Solution

https://youtu.be/t6yjfKXpwDs?t=786 (for AMC 10)

https://youtu.be/0xgTR3UEqbQ (for AMC 12)

~IceMatrix


https://youtu.be/oTqx8OqSMQI ~DSA_Catachu

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png