2022 AIME II Problems/Problem 8
Problem
Find the number of positive integers whose value can be uniquely determined when the values of , , and are given, where denotes the greatest integer less than or equal to the real number .
Solution
1. For to be uniquely determined, AND both need to be a multiple of or Since either or is odd, we know that either or has to be a multiple of We can state the following cases:
1. is a multiple of and is a multiple of
2. is a multiple of and is a multiple of
3. is a multiple of and is a multiple of
4. is a multiple of and is a multiple of
Solving for each case, we see that there are possibilities for cases 1 and 3 each, and possibilities for cases 2 and 4 each. However, we overcounted the cases where
1. is a multiple of and is a multiple of
2. is a multiple of and is a multiple of
Each case has possibilities.
Adding all the cases and correcting for overcounting, we get
~Lucasfunnyface
Side note: solution does not explain how we found the 20 possibilities, 30, possibilities, etc. It would be great if somebody added that in.
See Also
2022 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.